论文标题
Cegann:晶体边缘图表神经网络,用于材料环境的多尺度分类
CEGANN: Crystal Edge Graph Attention Neural Network for multiscale classification of materials environment
论文作者
论文摘要
机器学习模型和材料设计和发现中的应用通常涉及使用特征表示或“描述符”,然后是一种学习算法,将其映射到感兴趣的用户态度的属性。大多数基于数学公式的描述符在原子环境中并不是唯一的,也不是在不同的应用领域和/或材料类中遇到可转移性问题。在这项工作中,我们介绍了Crystal Edge Graph Graph Graph Graph Graph Newart网络(CEGANN)的工作流,该工作流使用基于图形的架构来学习独特的特征表示并对跨多个尺度(从原子能到中尺度到中尺度)进行材料进行分类,以及从金属,氧化物,氧化物,非金属,非金属材料甚至分层材料(例如zeeolites和semi Orderites材料)等各种类别等类别的材料(例如ZeoLites和sermai offerites材料)。我们首先证明了一个案例研究,该案例研究基于整体的结构级表示,例如空间群和结构维度(例如,散装,2D,簇等)。使用代表性的材料(例如多晶和沸石),我们接下来说明了网络在成功执行局部原子级分类任务(例如晶界识别和其他Heterointerfaces)中的转移性。我们还使用无定形合成混合物的沸石多晶型物的晶体成核和生长的代表性示例在(热)嘈杂的动力学环境中进行了分类。最后,我们表征了二进制中间机及其相变的形成和冰的生长,这表明了Cegann在具有热噪声和组成多样性的系统中的性能。总体而言,我们的方法对材料类型是不可知论的,并且可以对从原子级晶体结构到异质界面到显微镜晶界的特征进行多尺度分类。
Machine learning models and applications in materials design and discovery typically involve the use of feature representations or "descriptors" followed by a learning algorithm that maps them to a user-desired property of interest. Most popular mathematical formulation-based descriptors are not unique across atomic environments or suffer from transferability issues across different application domains and/or material classes. In this work, we introduce the Crystal Edge Graph Attention Neural Network (CEGANN) workflow that uses graph attention-based architecture to learn unique feature representations and perform classification of materials across multiple scales (from atomic to mesoscale) and diverse classes ranging from metals, oxides, non-metals and even hierarchical materials such as zeolites and semi ordered materials such as mesophases. We first demonstrate a case study where the classification is based on a global, structure-level representation such as space group and structural dimensionality (e.g., bulk, 2D, clusters etc.). Using representative materials such as polycrystals and zeolites, we next demonstrate the transferability of our network in successfully performing local atom-level classification tasks, such as grain boundary identification and other heterointerfaces. We also demonstrate classification in (thermal) noisy dynamical environments using a representative example of crystal nucleation and growth of a zeolite polymorph from an amorphous synthesis mixture. Finally, we characterize the formation of a binary mesophase and its phase transitions and the growth of ice, demonstrating the performance of CEGANN in systems with thermal noise and compositional diversity. Overall, our approach is agnostic to the material type and allows for multiscale classification of features ranging from atomic-scale crystal structures to heterointerfaces to microscale grain boundaries.