论文标题

频谱连续性和级别排斥:从无限到有限的$ \ boldsymbol \ varepsilon $的Ising CFT

Spectrum continuity and level repulsion: the Ising CFT from infinitesimal to finite $\boldsymbol\varepsilon$

论文作者

Henriksson, Johan, Kousvos, Stefanos R., Reehorst, Marten

论文摘要

使用数值共形性自举技术,我们对ISING CFT及其从InfitIniteSimal到有限值的频谱进行了非扰动研究。利用最近的导航器引导方法与极端功能方法结合使用,我们测试了$ \ varepsilon $ -Expansion的各种定性和定量特征。我们遵循众多操作员从扰动控制的态度到有限耦合的缩放维度。我们为$ \ Mathbb Z_2 $ - 至旋转12的运算符和$ \ Mathbb Z_2 $ -ODD运算符,直至Spin 6,并找到与扰动理论的良好匹配。在有限的耦合方案中,我们观察到两个操作员的尺寸相互接近,然后排斥,这是一种称为水平排斥的现象,可以通过操作员混合来分析。我们的工作改善了先前的研究精确度和研究人员数量的研究,并且是第一个观察到保形引导程序中水平排斥的人。

Using numerical conformal bootstrap technology we perform a non-perturbative study of the Ising CFT and its spectrum from infinitesimal to finite values of $\varepsilon=4-d$. Exploiting the recent navigator bootstrap method in conjunction with the extremal functional method, we test various qualitative and quantitative features of the $\varepsilon$-expansion. We follow the scaling dimensions of numerous operators from the perturbatively controlled regime to finite coupling. We do this for $\mathbb Z_2$-even operators up to spin 12 and for $\mathbb Z_2$-odd operators up to spin 6 and find a good matching with perturbation theory. In the finite coupling regime we observe two operators whose dimensions approach each other and then repel, a phenomenon known as level repulsion and which can be analyzed via operator mixing. Our work improves on previous studies in both increased precision and the number of operators studied, and is the first to observe level repulsion in the conformal bootstrap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源