论文标题
以对象为中心的过程监视
Predictive Object-Centric Process Monitoring
论文作者
论文摘要
业务流程的自动化和数字化导致信息系统中捕获的大量数据,这可以帮助企业更好地理解其流程,改善工作流程或提供运营支持。通过对正在进行的过程做出预测,可以识别瓶颈并重新分配资源,以及在过程实例的状态(案例)中获得的见解。传统上,数据以事件日志的形式从系统中提取,其中具有单个识别案例概念,例如用于现金订单(O2C)流程的订单ID。但是,实际过程通常具有多种对象类型,例如订单,项目和软件包,因此迫使使用单个案例概念的格式不会反映数据中的基本关系。引入了以对象为中心的事件日志(OCEL)格式,以正确捕获此信息。最先进的预测方法仅根据传统事件日志量身定制。该论点表明,可以使用OCEL中包含的丰富数据来增强一种利用生成对抗网络(GAN),长期记忆(LSTM)体系结构(LSTM)结构(LSTM)体系结构(SEQ2SEQ)的预测方法。 OCEL中的对象可以具有可用于预测下一个事件和时间戳的属性,例如对于对象类型包的优先类属性,指示速度较慢或更快地处理。在预测剩余事件的序列相似性和时间戳的平均绝对误差(MAE)的指标中,本文中的方法匹配或超过了先前的研究,具体取决于所选的对象属性是否是模型的有用特征。此外,本文提供了一个Web界面,以预测用户输入中的下一个活动序列。
The automation and digitalization of business processes has resulted in large amounts of data captured in information systems, which can aid businesses in understanding their processes better, improve workflows, or provide operational support. By making predictions about ongoing processes, bottlenecks can be identified and resources reallocated, as well as insights gained into the state of a process instance (case). Traditionally, data is extracted from systems in the form of an event log with a single identifying case notion, such as an order id for an Order to Cash (O2C) process. However, real processes often have multiple object types, for example, order, item, and package, so a format that forces the use of a single case notion does not reflect the underlying relations in the data. The Object-Centric Event Log (OCEL) format was introduced to correctly capture this information. The state-of-the-art predictive methods have been tailored to only traditional event logs. This thesis shows that a prediction method utilizing Generative Adversarial Networks (GAN), Long Short-Term Memory (LSTM) architectures, and Sequence to Sequence models (Seq2seq), can be augmented with the rich data contained in OCEL. Objects in OCEL can have attributes that are useful in predicting the next event and timestamp, such as a priority class attribute for an object type package indicating slower or faster processing. In the metrics of sequence similarity of predicted remaining events and mean absolute error (MAE) of the timestamp, the approach in this thesis matches or exceeds previous research, depending on whether selected object attributes are useful features for the model. Additionally, this thesis provides a web interface to predict the next sequence of activities from user input.