论文标题

单原子催化剂底物上的adatom和纳米颗粒动力学

Adatom and nanoparticle dynamics on single-atom catalyst substrates

论文作者

Camellone, Matteo Farnesi, Dvořák, Filip, Vorokhta, Mykhailo, Tovt, Andrii, Khalakhan, Ivan, Johánek, Viktor, Skála, Tomáš, Matolínová, Iva, Fabris, Stefano, Mysliveček, Josef

论文摘要

单原子催化剂代表了一个重要且不断增长的异质催化剂家族。最近的研究表明,除了单原子活性位点提供的有价值的催化特性外,催化剂底物上的单原子位点的存在可能会显着影响与金属单原子共存的支持金属纳米颗粒的种群。事实证明,在氧化或还原大气中对基于陶瓷的单原子催化剂的处理可提供对受支持的PT纳米颗粒大小的精确实验控制,并相应地控制了催化剂活性和稳定性。基于专用的表面科学实验,AB-INITIO计算和动力学蒙特卡洛模拟我们证明,陶瓷表面上的Pt纳米颗粒种群的形态是PT单原子位点和PT纳米颗粒之间PT原子竞争的结果。在氧化大气中,PT单原子位点可与单个PT原子和PT纳米颗粒缩小。在还原的大气中,PT单原子位点被减少,PT纳米颗粒生长。我们制定了PT重新分散并在陶瓷底物上变高的通用模型。我们的模型为在固定或交替的氧化/还原气氛下观察到的各种金属纳米颗粒动态过程提供了统一的原子水平解释,并在纳米粒子在单原子催化剂上的纳米粒子合奏时可以分类条件,并且可以稳定抗反抗逆转录病毒剂。

Single-atom catalysts represent an essential and ever-growing family of heterogeneous catalysts. Recent studies indicate that besides the valuable catalytic properties provided by single-atom active sites, the presence of single-atom sites on the catalyst substrates may significantly influence the population of supported metal nanoparticles coexisting with metal single atoms. Treatment of ceria-based single-atom catalysts in oxidizing or reducing atmospheres was proven to provide precise experimental control of the size of the supported Pt nanoparticles, and, correspondingly, control of catalyst activity and stability. Based on dedicated surface science experiments, ab-initio calculations and kinetic Monte-Carlo simulations we demonstrate that the morphology of Pt nanoparticle population on ceria surface is a result of a competition for Pt atoms between Pt single-atom sites and Pt nanoparticles. In oxidizing atmosphere, Pt single-atom sites provide strong bonding to single Pt atoms and Pt nanoparticles shrink. In reducing atmosphere, Pt single atom sites are depopulated and Pt nanoparticles grow. We formulate a generic model of Pt redispersion and coarsening on ceria substrates. Our model provides a unified atomic-level explanation for a variety of metal nanoparticle dynamic processes observed in single-atom catalysts under stationary or alternating oxidizing/reducing atmospheres, and allows to classify the conditions when nanoparticle ensembles on single-atom catalysts substrates can be stabilized against Ostwald ripening.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源