论文标题

DET6D:一种吸收的全台上3D对象检测器,用于改善地形鲁棒性

Det6D: A Ground-Aware Full-Pose 3D Object Detector for Improving Terrain Robustness

论文作者

Ouyang, Junyuan, Chen, Haoyao

论文摘要

LIDAR的准确3D对象检测对于自动驾驶至关重要。现有的研究全都基于平坦的假设。但是,实际的道路可能会在陡峭的部分中很复杂,从而打破了前提。在这种情况下,当前方法由于难以正确检测到倾斜的地形上的物体而受到性能降解。在这项工作中,我们提出了DET6D,这是第一个没有空间和姿势限制的Freedom 3D对象检测器,以改善地形鲁棒性。我们通过建立在整个空间范围内检测对象的能力来选择基于点的框架。为了预测包括音高和滚动在内的全程姿势,我们设计了一个利用当地地面约束的地面方向分支。考虑到长尾非平板场景数据收集和6D姿势注释的难度,我们提出了斜坡,这是一种数据增强方法,用于从平面场景中记录的现有数据集中合成非平板地形。各种数据集的实验证明了我们方法在不同地形上的有效性和鲁棒性。我们进一步进行了扩展实验,以探索网络如何预测两个额外的姿势。提出的模块是现有基于点的框架的插件。该代码可在https://github.com/hitsz-nrsl/de6d上找到。

Accurate 3D object detection with LiDAR is critical for autonomous driving. Existing research is all based on the flat-world assumption. However, the actual road can be complex with steep sections, which breaks the premise. Current methods suffer from performance degradation in this case due to difficulty correctly detecting objects on sloped terrain. In this work, we propose Det6D, the first full-degree-of-freedom 3D object detector without spatial and postural limitations, to improve terrain robustness. We choose the point-based framework by founding their capability of detecting objects in the entire spatial range. To predict full-degree poses, including pitch and roll, we design a ground-aware orientation branch that leverages the local ground constraints. Given the difficulty of long-tail non-flat scene data collection and 6D pose annotation, we present Slope-Aug, a data augmentation method for synthesizing non-flat terrain from existing datasets recorded in flat scenes. Experiments on various datasets demonstrate the effectiveness and robustness of our method in different terrains. We further conducted an extended experiment to explore how the network predicts the two extra poses. The proposed modules are plug-and-play for existing point-based frameworks. The code is available at https://github.com/HITSZ-NRSL/De6D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源