论文标题

救援的计算机视觉:婴儿姿势对称性的估计不一致注释

Computer Vision to the Rescue: Infant Postural Symmetry Estimation from Incongruent Annotations

论文作者

Huang, Xiaofei, Wan, Michael, Luan, Lingfei, Tunik, Bethany, Ostadabbas, Sarah

论文摘要

双侧姿势对称性是自闭症谱系障碍(ASD)的潜在风险标志物以及婴儿中先天性肌肉核糖(CMT)的症状的关键作用,但是当前评估对称性的方法需要费力的临床专家评估。在本文中,我们开发了一个基于计算机视觉的婴儿对称评估系统,利用婴儿的3D人姿势估计。通过对人类角度和对称性评级的调查,我们的发现对我们系统的评估和校准对地面真理评估的评估变得复杂,即这种评级表现出低评价者的可靠性。为了纠正这一点,我们开发了一个贝叶斯的估计量,该估计量来自易犯错的人类评估者的概率图形模型。我们表明,在预测贝叶斯骨料标签方面,3D婴儿姿势估计模型可以在接收器操作特征曲线的性能下实现68%的面积,而2D婴儿姿势估计模型仅为61%,而3D成人姿势估计模型的60%,强调了3D姿势和婴儿域知识的重要性,并强调了3D姿势和婴儿的知识。我们的调查分析还表明,人类评分易受较高的偏见和不一致性的影响,因此,我们的最终基于3D姿势的对称评估系统是校准的,但并未受到贝叶斯总体人类评分的直接监督,从而产生了更高的一致性和较低水平的LIMB评估偏置水平。

Bilateral postural symmetry plays a key role as a potential risk marker for autism spectrum disorder (ASD) and as a symptom of congenital muscular torticollis (CMT) in infants, but current methods of assessing symmetry require laborious clinical expert assessments. In this paper, we develop a computer vision based infant symmetry assessment system, leveraging 3D human pose estimation for infants. Evaluation and calibration of our system against ground truth assessments is complicated by our findings from a survey of human ratings of angle and symmetry, that such ratings exhibit low inter-rater reliability. To rectify this, we develop a Bayesian estimator of the ground truth derived from a probabilistic graphical model of fallible human raters. We show that the 3D infant pose estimation model can achieve 68% area under the receiver operating characteristic curve performance in predicting the Bayesian aggregate labels, compared to only 61% from a 2D infant pose estimation model and 60% from a 3D adult pose estimation model, highlighting the importance of 3D poses and infant domain knowledge in assessing infant body symmetry. Our survey analysis also suggests that human ratings are susceptible to higher levels of bias and inconsistency, and hence our final 3D pose-based symmetry assessment system is calibrated but not directly supervised by Bayesian aggregate human ratings, yielding higher levels of consistency and lower levels of inter-limb assessment bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源