论文标题

分析转移学习中的分布概括

Assaying Out-Of-Distribution Generalization in Transfer Learning

论文作者

Wenzel, Florian, Dittadi, Andrea, Gehler, Peter Vincent, Simon-Gabriel, Carl-Johann, Horn, Max, Zietlow, Dominik, Kernert, David, Russell, Chris, Brox, Thomas, Schiele, Bernt, Schölkopf, Bernhard, Locatello, Francesco

论文摘要

由于分布外的概括是一个普遍不足的问题,因此在不同的研究计划中研究了各种代理目标(例如校准,对抗性鲁棒性,算法腐败,跨轮班的不变性),从而导致不同的建议。在共享相同的抱负目标的同时,这些方法从未在相同的实验条件下对真实数据进行测试。在本文中,我们对以前的工作进行了统一的看法,突出了我们以经验来解决的消息差异,并提供有关如何衡量模型的鲁棒性以及如何改进它的建议。为此,我们收集了172个公开可用的数据集对,用于培训和分布外评估准确性,校准错误,对抗性攻击,环境不变性和合成腐败。我们通过在多个和几个设置中的九个不同的体系结构中微调31k网络。我们的发现证实,分布的精度往往会共同增加,但表明它们的关系主要依赖于数据集,并且通常比以前较小的规模研究所提出的更加细微差别,更复杂。

Since out-of-distribution generalization is a generally ill-posed problem, various proxy targets (e.g., calibration, adversarial robustness, algorithmic corruptions, invariance across shifts) were studied across different research programs resulting in different recommendations. While sharing the same aspirational goal, these approaches have never been tested under the same experimental conditions on real data. In this paper, we take a unified view of previous work, highlighting message discrepancies that we address empirically, and providing recommendations on how to measure the robustness of a model and how to improve it. To this end, we collect 172 publicly available dataset pairs for training and out-of-distribution evaluation of accuracy, calibration error, adversarial attacks, environment invariance, and synthetic corruptions. We fine-tune over 31k networks, from nine different architectures in the many- and few-shot setting. Our findings confirm that in- and out-of-distribution accuracies tend to increase jointly, but show that their relation is largely dataset-dependent, and in general more nuanced and more complex than posited by previous, smaller scale studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源