论文标题
在$ s_q^m $的等距嵌入性上,$ s_p^n $作为非交易性准巴纳赫空间
On Isometric Embeddability of $S_q^m$ into $S_p^n$ as non-commutative Quasi-Banach space
论文作者
论文摘要
$ s_q^m $的等距嵌入到$ s_p^n $中,其中$ 1 \ leq p \ neq q \ leq \ leq \ infty $和$ m,n \ geq 2 $最近在\ cite {jfa22}中研究了。在本文中,我们将等距嵌入性的研究扩展到上述$ p $和$ Q $的范围之外。更准确地说,我们表明,交通话之性的准式banach空间$ \ ell_q^m(\ r)$没有等距嵌入到$ \ ell_p^n(\ r)$中,其中$(q,q,p)\ in(0,p)\ in(0,\ infty)\ times(0,1)$(0,1)$ p \ p \ p \ neq q $。作为非共同的准巴纳赫空间,我们表明,$ s_q^m $没有等距嵌入到$ s_p^n $中,其中$(q,p)\ in(0,2)\ setMinus \ setMinus \ {1 \ \} \ times(0,1) \ {\ frac {1} {n}:n \ in \ mathbb {n} \} $ $ \ cup \,\ {\ {\ infty \} \ times(0,1)\ setMinus \ setminus \ \ setminus \ \ \ frac {\ frac {1} {n} Q $。此外,在某些限制性情况下,我们还表明,在$ s_p^n $中没有等距嵌入,其中$(q,p)\ in [2,\ infty)\ times \ times(0,1)$。我们论文中的一个新工具是Clarkson对Schatten班级运营商的不平等现象。涉及的其他工具是扰动理论中的Kato-Rellich定理和多个操作员积分,然后进行涉及电力系列分析的复杂计算。
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$ has been recently studied in \cite{JFA22}. In this article, we extend the study of isometric embeddability beyond the above mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell_q^m(\R)$ into $\ell_p^n(\R)$, where $(q,p)\in (0,\infty)\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$ $\cup\, \{1\}\times (0,1)\setminus \{\frac{1}{n}:n\in\mathbb{N}\}$ $\cup\, \{\infty\}\times (0,1)\setminus \{\frac{1}{n}:n\in\mathbb{N}\}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty)\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato-Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.