论文标题
HICF:双曲线内容丰富的协作过滤
HICF: Hyperbolic Informative Collaborative Filtering
论文作者
论文摘要
考虑到用户项目网络中幂律分布的流行率,双曲线空间最近引起了人们的关注,并在推荐系统中取得了令人印象深刻的性能。双曲线建议的优点在于,其指数增加的能力非常适合描述幂律分布式用户项目网络,而欧几里得等效的不足。尽管如此,尚不清楚双曲模型可以有效地推荐哪些项目,哪些项目不能。为了解决上述问题,我们采用最基本的建议技术,将协作过滤作为一种媒介来研究双曲线和欧几里得建议模型的行为。结果表明,(1)尾部在双曲线空间中比在欧几里得空间中更重点,但是仍然有足够的改进空间。 (2)头部物品在双曲线空间中受到适度的关注,这可以大大改善; (3)尽管如此,双曲线模型比欧几里得模型表现出更具竞争力的性能。在上述观察结果的驱动下,我们设计了一种新颖的学习方法,称为双曲线信息协作过滤(HICF),旨在弥补头部项目的建议有效性,同时提高尾部项目的性能。主要的想法是调整双曲线的排名学习,使其拉力和推动程序几何学了解,并为学习头部和尾部项目提供信息指导。广泛的实验备份了分析结果,还显示了所提出方法的有效性。这项工作对于个性化的建议很有价值,因为它揭示了双曲线空间有助于建模尾部项目,这通常代表用户注重的偏好或新产品。
Considering the prevalence of the power-law distribution in user-item networks, hyperbolic space has attracted considerable attention and achieved impressive performance in the recommender system recently. The advantage of hyperbolic recommendation lies in that its exponentially increasing capacity is well-suited to describe the power-law distributed user-item network whereas the Euclidean equivalent is deficient. Nonetheless, it remains unclear which kinds of items can be effectively recommended by the hyperbolic model and which cannot. To address the above concerns, we take the most basic recommendation technique, collaborative filtering, as a medium, to investigate the behaviors of hyperbolic and Euclidean recommendation models. The results reveal that (1) tail items get more emphasis in hyperbolic space than that in Euclidean space, but there is still ample room for improvement; (2) head items receive modest attention in hyperbolic space, which could be considerably improved; (3) and nonetheless, the hyperbolic models show more competitive performance than Euclidean models. Driven by the above observations, we design a novel learning method, named hyperbolic informative collaborative filtering (HICF), aiming to compensate for the recommendation effectiveness of the head item while at the same time improving the performance of the tail item. The main idea is to adapt the hyperbolic margin ranking learning, making its pull and push procedure geometric-aware, and providing informative guidance for the learning of both head and tail items. Extensive experiments back up the analytic findings and also show the effectiveness of the proposed method. The work is valuable for personalized recommendations since it reveals that the hyperbolic space facilitates modeling the tail item, which often represents user-customized preferences or new products.