论文标题
高维线性模型中更改点检测的统一框架
A unified framework for change point detection in high-dimensional linear models
论文作者
论文摘要
近年来,在许多科学领域,高维数据的变化点检测变得越来越重要。大多数文献都开发了为指定模型设计的各种独立方法(例如,平均移位模型,矢量自动回归模型,图形模型)。在本文中,我们为结构断裂检测提供了一个统一的框架,该框架适用于大型模型。此外,所提出的算法会在变更点检测过程中自动实现一致的参数估计,而无需改装模型。具体来说,我们引入了三步过程。第一步利用了块分割策略与基于融合的Lasso估计标准相结合的,从而导致显着的计算增长,而不会损害统计准确性在识别结构断裂的数量和位置时的统计准确性。此过程将进一步加上限制性和详尽的搜索步骤,以始终如一地估计断裂点的数量和位置。在估计的变更点的数量和其位置收敛速度上都证明了强大的保证。还提供了模型参数的一致估计。数值研究为理论提供了进一步的支持,并验证了其广泛模型的竞争性能。已开发的算法在R tagge LinareTect中实现。
In recent years, change point detection for high dimensional data has become increasingly important in many scientific fields. Most literature develop a variety of separate methods designed for specified models (e.g. mean shift model, vector auto-regressive model, graphical model). In this paper, we provide a unified framework for structural break detection which is suitable for a large class of models. Moreover, the proposed algorithm automatically achieves consistent parameter estimates during the change point detection process, without the need for refitting the model. Specifically, we introduce a three-step procedure. The first step utilizes the block segmentation strategy combined with a fused lasso based estimation criterion, leads to significant computational gains without compromising the statistical accuracy in identifying the number and location of the structural breaks. This procedure is further coupled with hard-thresholding and exhaustive search steps to consistently estimate the number and location of the break points. The strong guarantees are proved on both the number of estimated change points and the rates of convergence of their locations. The consistent estimates of model parameters are also provided. The numerical studies provide further support of the theory and validate its competitive performance for a wide range of models. The developed algorithm is implemented in the R package LinearDetect.