论文标题
与国家无关的上下文集的最佳和紧密的铃铛不平等
Optimal and tight Bell inequalities for state-independent contextuality sets
论文作者
论文摘要
两个基本的量子资源,非局部性和上下文性,可以通过贝尔的不平等现象连接,这些不平等是由国家独立的上下文(SI-C)集侵犯的。这些铃铛不平等允许需要同时非局部性和上下文性的应用。但是,对于现有的贝尔不平等,Si-C集产生的非局部性对噪声非常敏感。这排除了实验实施。在这里,我们确定了Si-C集产生的非局部性是最佳的铃铛不等式,即,对于最简单的Si-C,对于噪声或检测效率低下至最大稳健性[S. S. Yu和C. H. Oh,物理。莱特牧师。 108,030402(2012)]和Kochen-Specker集[A. Cabello等人,物理。 Lett。 A 212,183(1996)]表明,在这两种情况下,非局部性对于实验都足够抗性。我们的工作实现了结合非局部性和上下文性的实验,因此为利用其协同作用的应用铺平了道路。
Two fundamental quantum resources, nonlocality and contextuality, can be connected through Bell inequalities that are violated by state-independent contextuality (SI-C) sets. These Bell inequalities allow for applications that require simultaneous nonlocality and contextuality. However, for existing Bell inequalities, the nonlocality produced by SI-C sets is very sensitive to noise. This precludes experimental implementation. Here we identify the Bell inequalities for which the nonlocality produced by SI-C sets is optimal, i.e., maximally robust to either noise or detection inefficiency, for the simplest SI-C [S. Yu and C. H. Oh, Phys. Rev. Lett. 108, 030402 (2012)] and Kochen-Specker sets [A. Cabello et al., Phys. Lett. A 212, 183 (1996)] and show that, in both cases, nonlocality is sufficiently resistant for experiments. Our work enables experiments that combine nonlocality and contextuality and therefore paves the way for applications that take advantage of their synergy.