论文标题
基于机器学习的基于机器学习的DER本地控制方案,以抵消通信失败的测量设备
Implementation of Machine Learning-based DER Local Control Schemes on Measurement Devices for Counteracting Communication Failures
论文作者
论文摘要
与主动分布网格中分布式能源(DER)的大规模整合有关的重大挑战之一是它带来的不确定性。网格操作变得更加艰巨,以避免电压或违规行为。尽管文献中广泛讨论了最佳功率流(OPF)算法,但很少关注这种集中实施的鲁棒性,例如在通信失败过程中提供冗余控制解决方案。本文旨在对每种智能电子设备(IED)实现一种基于机器学习的算法,该算法模拟使用IEC 61850数据模型在通信失败过程中使用的集中式OPF。在正常情况下,IED沟通为集中的OPF。此外,对所有操作条件进行了离线训练的系统,并且将实际电压链接到DER设定点的单个查找表发送到了相应的控制器。在通信失败的情况下,回归模型允许局部重建DER设定值,从而模拟整体OPF。除回归控制外,本文还解释了一种脱机学习方法,以定期重新训练回归模型。实验使用硬件式测试设置对实验进行了验证。与在沟通失败期间的常规控制策略相比,测试显示出令人鼓舞的结果。经过适当的训练和协调时,每种DER的这种直观的局部控制方法可能对批量电力系统非常有益。这种基于机器学习的方法还可以替代现有的Q(V)控制策略,以更好地支持大量电源系统。
One of the significant challenges linked with the massive integration of distributed energy resources (DER) in the active distribution grids is the uncertainty it brings along. The grid operation becomes more arduous to avoid voltage or thermal violations. While the Optimal Power Flow (OPF) algorithm is vastly discussed in the literature, little attention has been given to the robustness of such centralised implementation, such as the provision of redundant control solutions during a communication failure. This paper aims to implement a machine learning-based algorithm at each Intelligent Electronic Device (IED) that mimics the centralised OPF used during communication failures using IEC 61850 data models. Under normal circumstances, the IEDs communicate for centralised OPF. In addition, the system is trained offline for all operational conditions and the individual look-up tables linking the actual voltages to the DER setpoints are sent to the respective controllers. The regression models allow for the local reconstruction of the DER setpoints, emulating the overall OPF, in case of a communication failure. In addition to the regression control, the paper also explains an offline learning approach for periodic re-training of the regression models. The implementation is experimentally verified using a Hardware-in-the-loop test setup. The tests showed promising results compared to conventional control strategies during communication failures. When properly trained and coordinated, such an intuitive local control approach for each DER could be very beneficial for the bulk power system. This machine learning-based approach could also replace the existing Q(V) control strategies, to better support the bulk power system.