论文标题

使用自组织图的星系分布不完整测试

Galaxy Distribution Incompleteness Testing Using Self-Organizing Maps

论文作者

McMahon, Isaac, Rau, Markus Michael, Mandelbaum, Rachel

论文摘要

使用光度测量调查的光度样品的红移分布的校准受到建模光谱调查的选择函数的困难。在这项工作中,我们分析了这些选择功能如何影响红移推断,并使用光度法中的局部校准测试量化了诱导的偏差。这项研究是使用模拟光谱测量的径向选择函数以及光度法测量目录的伴随的模拟目录进行的。我们使用自组织图来分区光度法并执行局部$χ^2 $测试,以研究使用光谱数据进行校准的红移推断的概率校准。这项工作的目的是研究未校正的选择函数在校准数据中对红移预测准确性的影响,并严格讨论缓解方法。特别是我们测试了基于淘汰的偏置校正技术,旨在通过识别光度法中的光度法中的区域来消除红移校准偏见,并提出了未来研究的途径。我们发现,删除用光谱校准数据不足的色彩障碍空间中的区域不会消除选择函数引起的红移推断中的所有偏见。

The calibration of redshift distributions for photometric samples using spectroscopic surveys is plagued by the difficulty in modelling the selection functions of spectroscopic surveys. In this work, we analyse how these selection functions impact redshift inference and quantify the induced biases using local calibration tests in photometry space. The study is carried out using simulations that mimic the radial selection function of a spectroscopic survey and an accompanying mock catalog of a photometric galaxy survey catalog. We use a self-organizing map to partition the photometry space and perform a local $χ^2$ test to study the probability calibration of redshift inferences that use the spectroscopic data for calibration. The goal of this work is to investigate the effect of uncorrected selection functions in the calibration data on redshift prediction accuracy and critically discuss mitigation methods. In particular we test culling-based bias correction techniques, that aim to remove redshift calibration biases by identifying regions in photometry with few spectroscopic calibration data, and propose avenues for future research. We found that removing regions in color-magnitude space that are underpopulated with spectroscopic calibration data does not remove all biases in redshift inference induced by the selection function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源