论文标题
太阳能光伏部署的空间分布:基于区域的卷积神经网络的应用
Spatial Distribution of Solar PV Deployment: An Application of the Region-Based Convolutional Neural Network
论文作者
论文摘要
本文对美国科罗拉多州的太阳能光伏(PV)部署率的社会和环境决定因素进行了全面分析。使用基于卷积神经网络的652,795卫星图像和计算机视觉框架,我们估计了带有太阳能光伏系统的家庭的比例以及太阳能电池板覆盖的屋顶区域。在人口普查组级别上,有7%的科罗拉多州家庭具有屋顶光伏系统,截至2021年,太阳能电池板覆盖了科罗拉多州的2.5%的屋顶区域。我们的机器学习模型预测基于43个自然和社会特征的太阳能PV部署。使用四种算法(随机森林,Catboost,LightGBM,XGBOOST),我们发现民主党的份额,冰雹风险,强风风险,中间的房屋价值和太阳能光伏允许时间表是每个家庭太阳能PV数量的最重要的预测指标。除了房屋的大小外,PV与屋顶面积的比率在很大程度上取决于允许时间表,租房者比例和多户住房的比例以及冬季天气风险。我们还发现屋顶太阳能部署中的种族和种族差异。在非裔美国人和西班牙裔居民中,家庭收入中位收入对太阳能部署的平均边际影响较低,并且在白人和亚洲居民比例较大的社区中较高。在正在进行的能源过渡中,了解太阳能部署的主要预测因素可以更好地为业务和政策决策提供信息,以制定更有效,更公平的网格基础设施投资和分布式能源资源管理。
This paper presents a comprehensive analysis of the social and environmental determinants of solar photovoltaic (PV) deployment rates in Colorado, USA. Using 652,795 satellite imagery and computer vision frameworks based on a convolutional neural network, we estimated the proportion of households with solar PV systems and the roof areas covered by solar panels. At the census block group level, 7% of Coloradan households have a rooftop PV system, and 2.5% of roof areas in Colorado are covered by solar panels as of 2021. Our machine learning models predict solar PV deployment based on 43 natural and social characteristics of neighborhoods. Using four algorithms (Random Forest, CATBoost, LightGBM, XGBoost), we find that the share of Democratic party votes, hail risks, strong wind risks, median home value, and solar PV permitting timelines are the most important predictors of solar PV count per household. In addition to the size of the houses, PV-to-roof area ratio is highly dependent on solar PV permitting timelines, proportion of renters and multifamily housing, and winter weather risks. We also find racial and ethnic disparities in rooftop solar deployment. The average marginal effects of median household income on solar deployment are lower in communities with a greater proportion of African American and Hispanic residents and are higher in communities with a greater proportion of White and Asian residents. In the ongoing energy transition, knowing the key predictors of solar deployment can better inform business and policy decision making for more efficient and equitable grid infrastructure investment and distributed energy resource management.