论文标题
有限组方案在曲线上的行动
Actions of finite group schemes on curves
论文作者
论文摘要
有限组方案$ g $的每一个动作都承认了一种投影性的模型,但不一定是普通模型。作为一种补救措施,我们介绍并探讨了$ g $ - 正态的概念。特别是,配备$ g $ Action的每条曲线都有一个独特的投影$ G $ - 正常模型,其特征是所有轨道的理想束带的可逆性。此外,$ g $ - 正常曲线自然发生在积极特征的表面上的某些问题中。
Every action of a finite group scheme $G$ on a variety admits a projective equivariant model, but not necessarily a normal one. As a remedy, we introduce and explore the notion of $G$-normalization. In particular, every curve equipped with a $G$-action has a unique projective $G$-normal model, characterized by the invertibility of ideal sheaves of all orbits. Also, $G$-normal curves occur naturally in some questions on surfaces in positive characteristics.