论文标题

EEG2VEC:通过变异自动编码器学习情感脑电图表示

EEG2Vec: Learning Affective EEG Representations via Variational Autoencoders

论文作者

Bethge, David, Hallgarten, Philipp, Grosse-Puppendahl, Tobias, Kari, Mohamed, Chuang, Lewis L., Özdenizci, Ozan, Schmidt, Albrecht

论文摘要

人们对人类情感状态的稀疏代表性格式的需求日益增长,这些格式可以在有限的计算记忆资源的情况下使用。我们探讨了在潜在向量空间中代表神经数据对情绪刺激的响应是否可以用于预测情绪状态,并生成参与者和/或情感特定于情绪的合成EEG数据。我们提出了一个有条件的基于变异自动编码器的框架EEG2VEC,以从EEG数据中学习生成歧视性表示。情感脑电图记录数据集的实验结果表明,我们的模型适合于无监督的脑电图建模,基于潜在代表的三个不同的情绪类别(正,中性,负)的分类(正面,中性,负面),可实现68.49%的可靠性能,并使综合eeg序列重新构成了eeg数据输入,以特别是eeg seeg序列,以尤其是eeg eeg数据输入,以尤其是低效率构造了较低的效果。我们的工作推进了情感脑电图表示的领域,例如生成人工(标签)训练数据或减轻手动功能提取,并为内存约束的边缘计算应用程序提供效率。

There is a growing need for sparse representational formats of human affective states that can be utilized in scenarios with limited computational memory resources. We explore whether representing neural data, in response to emotional stimuli, in a latent vector space can serve to both predict emotional states as well as generate synthetic EEG data that are participant- and/or emotion-specific. We propose a conditional variational autoencoder based framework, EEG2Vec, to learn generative-discriminative representations from EEG data. Experimental results on affective EEG recording datasets demonstrate that our model is suitable for unsupervised EEG modeling, classification of three distinct emotion categories (positive, neutral, negative) based on the latent representation achieves a robust performance of 68.49%, and generated synthetic EEG sequences resemble real EEG data inputs to particularly reconstruct low-frequency signal components. Our work advances areas where affective EEG representations can be useful in e.g., generating artificial (labeled) training data or alleviating manual feature extraction, and provide efficiency for memory constrained edge computing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源