论文标题

一种使用回忆模型和设备模拟神经形态体系结构的工具

A tool for emulating neuromorphic architectures with memristive models and devices

论文作者

Huang, Jinqi, Stathopoulos, Spyros, Serb, Alex, Prodromakis, Themis

论文摘要

备忘录显示了增强神经形态计算概念和AI硬件加速器的有希望的功能。在本文中,我们提出了一个用户友好的软件基础架构,该基础架构允许使用Memristor模型模拟各种神经形态架构。该工具赋予了将备忘录用于在线学习和在线分类任务的研究,从而预测了培训过程中的Memristor电阻状态变化。该工具的多功能性是通过功能来展示的,以供用户自定义所使用的Memristor和Neuronal模型中的参数以及所采用的学习规则。这进一步允许用户在广泛的参数中验证概念及其灵敏度。我们通过MNIST分类任务演示了该工具的使用。最后,我们展示了如何使用该工具通过与市售特征工具进行适当的接口来模拟与实用的回忆设备研究中研究的概念。

Memristors have shown promising features for enhancing neuromorphic computing concepts and AI hardware accelerators. In this paper, we present a user-friendly software infrastructure that allows emulating a wide range of neuromorphic architectures with memristor models. This tool empowers studies that exploit memristors for online learning and online classification tasks, predicting memristor resistive state changes during the training process. The versatility of the tool is showcased through the capability for users to customise parameters in the employed memristor and neuronal models as well as the employed learning rules. This further allows users to validate concepts and their sensitivity across a wide range of parameters. We demonstrate the use of the tool via an MNIST classification task. Finally, we show how this tool can also be used to emulate the concepts under study in-silico with practical memristive devices via appropriate interfacing with commercially available characterisation tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源