论文标题

缓慢旋转的Kerr-De保姆家族的线性稳定性

Linear stability of the slowly-rotating Kerr-de Sitter family

论文作者

Fang, Allen Juntao

论文摘要

在本文中,我们证明了黑洞的缓慢旋转的Kerr-de保姆家族是线性稳定的,这是对Einstein真空方程的一种解决方案,具有$λ> 0 $ 0 $的谐波(Wave)。本文是系列的一部分,该系列提供了一个新颖的证据,证明了缓慢旋转的Kerr-De保姆家族的全面稳定性。本文及其后续措施通过将准模式将准模式解释为hilbert空间上操作员的$ h^k $特征值,从而提供了Kerr-de保姆家族的非线性稳定性,从而从Hintz和Vasy的原始作品中提供了一种替代方法。特别是,我们避免构建分解的依然形态延续。我们也不压缩时空,因此避免使用$ b $ - 钙库,而仅在被困组的附近使用标准的伪差异参数;并避免完全阻尼。当前论文中的方法提供了一个明确的示例,介绍了如何使用vectorfield方法在诱捕背景上实现分解估计。

In this paper, we prove that the slowly-rotating Kerr-de Sitter family of black holes are linearly stable as a family of solutions to the Einstein vacuum equations with $Λ>0$ in harmonic (wave) gauge. This article is part of a series that provides a novel proof of the full nonlinear stability of the slowly-rotating Kerr-de Sitter family. This paper and its follow-up offer a self-contained alternative approach to nonlinear stability of the Kerr-de Sitter family from the original work of Hintz and Vasy by interpreting quasinormal modes as $H^k$ eigenvalues of an operator on a Hilbert space, and using integrated local energy decay estimates to prove the existence of a spectral gap. In particular, we avoid the construction of a meromorphic continuation of the resolvent. We also do not compactify the spacetime, thus avoiding the use of $b$-calculus and instead only use standard pseudo-differential arguments in a neighborhood of the trapped set; and avoid constraint damping altogether. The methods in the current paper offer an explicit example of how to use the vectorfield method to achieve resolvent estimates on a trapping background.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源