论文标题
SPSN:用于RGB-D显着对象检测的Superpixel原型采样网络
SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection
论文作者
论文摘要
RGB-D显着对象检测(SOD)最近引起了人们的关注,因为它是各种视觉任务的重要预处理操作。但是,尽管基于深度学习的方法取得了进步,但由于RGB图像与深度图和低质量深度图之间的较大域间隙,RGB-D SOD仍然具有挑战性。为了解决这个问题,我们提出了一种新颖的超像素原型采样网络(SPSN)体系结构。所提出的模型将输入RGB图像和深度映射分解为组件超像素,以生成组件原型。我们设计了一个原型采样网络,因此网络仅采样与显着对象相对应的原型。此外,我们提出了一个依赖选择模块,以识别每个RGB和深度特征图的质量,并根据其可靠性成比例地适应它们。所提出的方法使模型鲁棒性与RGB图像和深度图之间的不一致性,并消除了非偏好对象的影响。我们的方法在五个流行的数据集上进行了评估,从而实现了最先进的性能。我们通过比较实验证明了所提出的方法的有效性。
RGB-D salient object detection (SOD) has been in the spotlight recently because it is an important preprocessing operation for various vision tasks. However, despite advances in deep learning-based methods, RGB-D SOD is still challenging due to the large domain gap between an RGB image and the depth map and low-quality depth maps. To solve this problem, we propose a novel superpixel prototype sampling network (SPSN) architecture. The proposed model splits the input RGB image and depth map into component superpixels to generate component prototypes. We design a prototype sampling network so that the network only samples prototypes corresponding to salient objects. In addition, we propose a reliance selection module to recognize the quality of each RGB and depth feature map and adaptively weight them in proportion to their reliability. The proposed method makes the model robust to inconsistencies between RGB images and depth maps and eliminates the influence of non-salient objects. Our method is evaluated on five popular datasets, achieving state-of-the-art performance. We prove the effectiveness of the proposed method through comparative experiments.