论文标题

部分可观测时空混沌系统的无模型预测

Covariate Adjustment in Randomized Clinical Trials with Missing Covariate and Outcome Data

论文作者

Chang, Chia-Rui, Song, Yue, Li, Fan, Wang, Rui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

When analyzing data from randomized clinical trials, covariate adjustment can be used to account for chance imbalance in baseline covariates and to increase precision of the treatment effect estimate. A practical barrier to covariate adjustment is the presence of missing data. In this paper, in the light of recent theoretical advancement, we first review several covariate adjustment methods with incomplete covariate data. We investigate the implications of the missing data mechanism on estimating the average treatment effect in randomized clinical trials with continuous or binary outcomes. In parallel, we consider settings where the outcome data are fully observed or are missing at random; in the latter setting, we propose a full weighting approach that combines inverse probability weighting for adjusting missing outcomes and overlap weighting for covariate adjustment. We highlight the importance of including the interaction terms between the missingness indicators and covariates as predictors in the models. We conduct comprehensive simulation studies to examine the finite-sample performance of the proposed methods and compare with a range of common alternatives. We find that conducting the proposed adjustment methods generally improves the precision of treatment effect estimates regardless of the imputation methods when the adjusted covariate is associated with the outcome. We apply the methods to the Childhood Adenotonsillectomy Trial to assess the effect of adenotonsillectomy on neurocognitive functioning scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源