论文标题
部分可观测时空混沌系统的无模型预测
Self-calibrating Photometric Stereo by Neural Inverse Rendering
论文作者
论文摘要
本文解决了3D对象重建的未校准光度立体声的任务,其中对象形状,对象反射和照明方向均未知。这是一项极其艰巨的任务,挑战与光度法立体声中众所周知的广义浮雕(GBR)歧义的存在进一步更加复杂。解决这种歧义的先前方法要么依赖于过度简化的反射模型,要么假设特殊的光分布。我们提出了一种在一般表面和灯光假设下共同优化对象形状,光方向和光强度的新方法。这些镜面可明确用于通过神经反向渲染过程求解未校准的光度立体声。我们使用新型的进行性镜面底座逐渐拟合从闪亮到粗糙的镜面。我们的方法通过最大程度地减少对每个对象基础上的重建误差来利用基于物理的渲染方程。我们的方法证明了在现实世界数据集上的光估计和形状恢复中的最新精度。
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction, where both the object shape, object reflectance, and lighting directions are unknown. This is an extremely difficult task, and the challenge is further compounded with the existence of the well-known generalized bas-relief (GBR) ambiguity in photometric stereo. Previous methods to resolve this ambiguity either rely on an overly simplified reflectance model, or assume special light distribution. We propose a new method that jointly optimizes object shape, light directions, and light intensities, all under general surfaces and lights assumptions. The specularities are used explicitly to solve uncalibrated photometric stereo via a neural inverse rendering process. We gradually fit specularities from shiny to rough using novel progressive specular bases. Our method leverages a physically based rendering equation by minimizing the reconstruction error on a per-object-basis. Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.