论文标题

通过假设封闭时间曲线的量子模拟建立的计量中的非古典优势

Nonclassical advantage in metrology established via quantum simulations of hypothetical closed timelike curves

论文作者

Arvidsson-Shukur, David R. M., McConnell, Aidan G., Halpern, Nicole Yunger

论文摘要

我们构建了一个计量学实验,在该实验中,计量学家有时可以通过模拟封闭的时间表曲线来修改她的意见状态,该曲线会随着时间的流逝而向后传播。封闭式曲线的存在是假设的。然而,可以通过量子偏移电路概率地模拟它们。我们利用此类模拟来确定可以通过纠缠实现的违反直觉的非分类优势。我们的实验呼应了一项常见的信息处理任务:计量学家必须准备探针以输入未知的量子相互作用。目标是每次探测器提出尽可能多的信息。如果输入是最佳的,则每个探针所获得的信息可以超过任何经典的值。问题是,只有在互动之后,计量学家才能学会哪种输入是最佳的。度量学家可以通过纠缠操作有效地传送最佳输入来改变她的意见,从而有效地传送最佳输入。有效的时间旅行有时会失败,但可以确保对试验的总结,计量学家的奖金是积极的。我们的Gedankenexperiment表明,纠缠可以产生经典年代尊重理论中禁止的操作优势。

We construct a metrology experiment in which the metrologist can sometimes amend her input state by simulating a closed timelike curve, a worldline that travels backward in time. The existence of closed timelike curves is hypothetical. Nevertheless, they can be simulated probabilistically by quantum-teleportation circuits. We leverage such simulations to pinpoint a counterintuitive nonclassical advantage achievable with entanglement. Our experiment echoes a common information-processing task: A metrologist must prepare probes to input into an unknown quantum interaction. The goal is to infer as much information per probe as possible. If the input is optimal, the information gained per probe can exceed any value achievable classically. The problem is that, only after the interaction does the metrologist learn which input would have been optimal. The metrologist can attempt to change her input by effectively teleporting the optimal input back in time, via entanglement manipulation. The effective time travel sometimes fails but ensures that, summed over trials, the metrologist's winnings are positive. Our Gedankenexperiment demonstrates that entanglement can generate operational advantages forbidden in classical chronology-respecting theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源