论文标题
馈送潜在领域适应
Feed-Forward Latent Domain Adaptation
论文作者
论文摘要
我们研究了一种新的高度实践问题设置,该设置使资源受限的边缘设备能够将预训练的模型适应其本地数据分布。认识到设备的数据可能来自多个潜在域,其中包括与未标记的域和域 - iRrelevant示例的混合在一起,我们专注于相对研究的潜在域适应性问题。考虑到边缘设备的局限性,我们的目标是仅使用预训练的模型,并以馈送方式对其进行调整,而无需使用后传播,而无需访问源数据。对这些现实的约束进行建模,使我们进入了新颖而实际上重要的潜在潜在领域适应性问题。我们的解决方案是Meta-learn的网络,能够嵌入混合相关目标数据集并动态使用交叉注意的目标示例推断。由此产生的框架可导致对强大的ERM基准的一致改进。我们还表明,我们的框架有时甚至会在域监督适应的上限上有所改善,在这种适应中,仅提供与域相关的实例进行适应。这表明人类注释的域标签可能并不总是最佳的,并且提高了通过自动实例选择做得更好的可能性。
We study a new highly-practical problem setting that enables resource-constrained edge devices to adapt a pre-trained model to their local data distributions. Recognizing that device's data are likely to come from multiple latent domains that include a mixture of unlabelled domain-relevant and domain-irrelevant examples, we focus on the comparatively under-studied problem of latent domain adaptation. Considering limitations of edge devices, we aim to only use a pre-trained model and adapt it in a feed-forward way, without using back-propagation and without access to the source data. Modelling these realistic constraints bring us to the novel and practically important problem setting of feed-forward latent domain adaptation. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvements over strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.