论文标题
$ g $ - 完美的空间上
$G$-torsors on perfectoid spaces
论文作者
论文摘要
对于任何刚性分析组的$ g $,超过$ \ mathbb q_p $上的非Archimedean field $ k $,我们在$ V $ - 学术中研究$ g $ -torsors的$ g $ -torsors。我们的主要结果是,在PerfectOid空间上,典型的$ g $ torsors和$ v $ - 学位相同。这将概括为$ g = \ mathbb g_a $和$ g = \ mathrm {gl} _n $,因此由于Scholze和Kedlaya-liu。 在$ k $上的一般ADIC Space $ x $上,与$ v $ -topological $ g $ -torsors相比,可能有更多的$ v $ - $ g $ -torsors,我们表明,对于任何开放的亚组$ u \ subseteq g $,$ x_v $上的任何$ g $ -torsor,任何$ g $ -torsor possor $ x_v $承认将结构组减少到$ u $ u $ u $ u $ u $ x $ x $ x $。在$ p $ -adic Simpson通信的上下文中,它具有应用程序:例如,我们使用它来表明,在任何ADIC空间中,广义$ \ Mathbb Q_P $ - 标准 - 陈述等于$ V $ - VECTOR-VECTOR捆绑包。
For any rigid analytic group variety $G$ over a non-archimedean field $K$ over $\mathbb Q_p$, we study $G$-torsors on adic spaces over $K$ in the $v$-topology. Our main result is that on perfectoid spaces, $G$-torsors in the étale and $v$-topology are equivalent. This generalises the known cases of $G=\mathbb G_a$ and $G=\mathrm{GL}_n$ due to Scholze and Kedlaya--Liu. On a general adic space $X$ over $K$, where there can be more $v$-topological $G$-torsors than étale ones, we show that for any open subgroup $U\subseteq G$, any $G$-torsor on $X_v$ admits a reduction of structure group to $U$ étale-locally on $X$. This has applications in the context of the $p$-adic Simpson correspondence: For example, we use it to show that on any adic space, generalised $\mathbb Q_p$-representations are equivalent to $v$-vector bundles.