论文标题

巨型流程:单发兆像素神经头像

MegaPortraits: One-shot Megapixel Neural Head Avatars

论文作者

Drobyshev, Nikita, Chelishev, Jenya, Khakhulin, Taras, Ivakhnenko, Aleksei, Lempitsky, Victor, Zakharov, Egor

论文摘要

在这项工作中,我们将神经头化的头像技术推向了百万像素分辨率,同时着重于跨驾驶合成的特别挑战性的任务,即当驾驶图像的出现与动画源图像大不相同时。我们提出了一组新的神经体系结构和训练方法,这些方法可以利用中分辨率的视频数据和高分辨率图像数据,以达到所需的渲染图像质量和概括和新视图和运动的概括。我们证明,建议的架构和方法产生令人信服的高分辨率神经化身,在跨驾驶场景中表现优于竞争对手。最后,我们展示了如何将受过训练的高分辨率神经化身模型蒸馏成一个轻量级的学生模型,该模型是实时运行的,并将神经化身身份锁定到数十个预定的源图像。实时操作和身份锁对于许多实际应用头像系统至关重要。

In this work, we advance the neural head avatar technology to the megapixel resolution while focusing on the particularly challenging task of cross-driving synthesis, i.e., when the appearance of the driving image is substantially different from the animated source image. We propose a set of new neural architectures and training methods that can leverage both medium-resolution video data and high-resolution image data to achieve the desired levels of rendered image quality and generalization to novel views and motion. We demonstrate that suggested architectures and methods produce convincing high-resolution neural avatars, outperforming the competitors in the cross-driving scenario. Lastly, we show how a trained high-resolution neural avatar model can be distilled into a lightweight student model which runs in real-time and locks the identities of neural avatars to several dozens of pre-defined source images. Real-time operation and identity lock are essential for many practical applications head avatar systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源