论文标题

最可能的最佳选择

Selection of the Most Probable Best

论文作者

Kim, Taeho, Kim, Kyoung-kuk, Song, Eunhye

论文摘要

我们考虑一个期望值排名和选择(R&S)问题,其中所有K解决方案的仿真输出都取决于一个通用参数,其不确定性可以通过分布来建模。我们将最可能的最佳(MPB)定义为具有最大概率的解决方案,即在参数具有有限支持时,在分布和设计有效的顺序采样算法方面是学习MPB的。我们得出了错误选择MPB并制定最佳计算预算分配问题的概率的较大偏差率,以找到速率最大化的静态采样比率。然后将问题放松,以获得一组最佳条件,这些条件可解释且在计算上有效验证。我们设计了一系列算法,这些算法在最佳条件下替代未知均值及其估计值,并证明算法的采样比达到了随着模拟预算的增加而达到的条件。此外,我们表明,通过采用内核脊回归以进行平均估计,同时实现相同的渐近收敛结果,可以通过采用内核脊回归来显着改善算法的经验性能。该算法根据最新的上下文R&S算法进行了基准测试,并证明具有出色的经验性能。

We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution. We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution and design an efficient sequential sampling algorithm to learn the MPB when the parameter has a finite support. We derive the large deviations rate of the probability of falsely selecting the MPB and formulate an optimal computing budget allocation problem to find the rate-maximizing static sampling ratios. The problem is then relaxed to obtain a set of optimality conditions that are interpretable and computationally efficient to verify. We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases. Furthermore, we show that the empirical performances of the algorithms can be significantly improved by adopting the kernel ridge regression for mean estimation while achieving the same asymptotic convergence results. The algorithms are benchmarked against a state-of-the-art contextual R&S algorithm and demonstrated to have superior empirical performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源