论文标题
高速旋转重力的“字符串”:线性化didenko-vasiliev解决方案的新量表和全息二元性证明
Higher-spin gravity's "string": new gauge and proof of holographic duality for the linearized Didenko-Vasiliev solution
论文作者
论文摘要
我们考虑ADS_4中的A型高旋转重力,在边界上的自由u(n)向量模型上全息二。我们研究了Didenko-Vasiliev“ BPS Black Hole”的线性化版本,我们认为该理论相当于基本弦。 Didenko-vasiliev解决方案由沿散装的大地测量的粒子样源产生的所有旋转的量规场组成,并且在地球终点上对双向边界算子的全息偶性。我们的第一个主要结果是用于该解决方案的新规格,这使得在边界场方程下表现出其行为。它可以看作是Flat Spacetime的de Donder仪表的广告,但不是广告中的De Donder。据我们所知,该规格即使在Spin-2扇区中也是新颖的,因此为(a)ds_4中的大量点粒子的线性重力场提供了新的表达。我们的第二个主要结果是证明了两种didenko-vasiliev溶液的相互散装作用与两个边界双焦点的CFT相关器之间的全息二元性。作为中间步骤,我们表明,在双尾部 - >局部限制中,didenko-vasiliev解决方案再现了所有自旋的标准边界构成传播器。我们以fronsdal领域的“公制”语言工作,并使用嵌入空间形式主义。
We consider type-A higher-spin gravity in AdS_4, holographically dual to a free U(N) vector model on the boundary. We study the linearized version of the Didenko-Vasiliev "BPS black hole", which we view as this theory's equivalent of the fundamental string. The Didenko-Vasiliev solution consists of gauge fields of all spins generated by a particle-like source along a bulk geodesic, and is holographically dual to a bilocal boundary operator at the geodesic's endpoints. Our first main result is a new gauge for this solution, which makes manifest its behavior under the boundary field equation. It can be viewed as an AdS uplift of flat spacetime's de Donder gauge, but is not de Donder in AdS. To our knowledge, this gauge is novel even in the spin-2 sector, and thus provides a new expression for the linearized gravitational field of a massive point particle in (A)dS_4. Our second main result is a proof of the holographic duality between the mutual bulk action of two Didenko-Vasiliev solutions and the CFT correlator of two boundary bilocals. As an intermediate step, we show that in a bilocal->local limit, the Didenko-Vasiliev solution reproduces the standard boundary-bulk propagators of all spins. We work in the "metric-like" language of Fronsdal fields, and use the embedding-space formalism.