论文标题
Z-聚构函数
Z-polyregular functions
论文作者
论文摘要
本文介绍了从有限词到整数的强大函数类别,我们称之为z-构规则函数。我们表明,它可以在逻辑,Z理性表达式,Z理性系列和传感器方面接受自然特征。 然后,我们研究两个子类会员问题。首先,我们表明函数的渐近生长速率是可以计算的,并且对应于使用逻辑公式表示它所需的变量数量最少。其次,我们表明z-聚调函数的一阶确定性是可以决定的。为了显示后者,我们介绍了残留换能器的原始概念,并基于基础性提供了语义表征。
This paper introduces a robust class of functions from finite words to integers that we call Z-polyregular functions. We show that it admits natural characterizations in terms of logics, Z-rational expressions, Z-rational series and transducers. We then study two subclass membership problems. First, we show that the asymptotic growth rate of a function is computable, and corresponds to the minimal number of variables required to represent it using logical formulas. Second, we show that first-order definability of Z-polyregular functions is decidable. To show the latter, we introduce an original notion of residual transducer, and provide a semantic characterization based on aperiodicity.