论文标题

平均深层DENOISER用于图像正则化

Averaged Deep Denoisers for Image Regularization

论文作者

Nair, Pravin, Chaudhury, Kunal N.

论文摘要

即插即用(PNP)和逐个定期化(红色)是图像重建的最新范例,它利用现代DeOisers的力量来实现图像正则化。特别是,它们已被证明可以通过CNN Denoisers提供最新的重建。由于正规化是以临时的方式进行的,因此了解PNP和RED的收敛性是一个活跃的研究领域。在最近的作品中显示,如果Deoiser平均或非专业化,则可以保证迭代收敛。但是,将非跨性与基于梯度的学习相结合是具有挑战性的,核心问题是测试非跨性能是棘手的。使用数值示例,我们表明现有的CNN Denoiser倾向于违反非专业属性,这可能会导致PNP或红色差异。实际上,用于培训非专业的denoisers的算法不能保证非义务或计算密集型。在这项工作中,我们通过展开应用于小波denoising的基于分裂的优化算法来构建承包和平均图像Denoisiser,并证明其PNP和RED的正则化能力可以与CNN Deoisers匹配。据我们所知,这是第一个提出一个简单的框架,用于使用网络展开培训承包商的框架。

Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源