论文标题
基于物理的高频液态金属喷气机的喷嘴设计规则
Physics-Based Nozzle Design Rules for High-Frequency Liquid Metal Jetting
论文作者
论文摘要
我们提出了基于物理的喷嘴设计规则,以实现高通量和稳定的喷射液液体金属3D打印。设计规则基于缩放定律,捕获了半月板振荡放松时间的变化,并具有喷嘴内部轮廓的几何特征。这些特征包括喷嘴的体积,横截面区域和内部表面积。使用边界层理论进行简单的几何形状,我们表明,当内部表面积与体积的比率增加时,半月板会更快地沉降。高效率多相流仿真验证此缩放。我们使用这些法律来探索几个设计概念,这些设计概念具有参数化的形状类别,这些概念会减少半月板放松时间,同时保留所需的液滴规格。最后,我们表明,对于各种喷嘴概念概念,可以通过增加圆周表面积与批量量的比例来实现最佳性能。
We present physics-based nozzle design rules to achieve high-throughput and stable jetting in drop-on-demand liquid metal 3D printing. The design rules are based on scaling laws that capture the change of meniscus oscillation relaxation time with geometric characteristics of the nozzle's inner profile. These characteristics include volume, cross-sectional area, and inner surface area of the nozzle. Using boundary layer theory for a simple geometry, we show that the meniscus settles faster when the ratio of inner surface area to volume is increased. High-fidelity multiphase flow simulations verify this scaling. We use these laws to explore several design concepts with parameterized classes of shapes that reduce the meniscus relaxation time while preserving desired droplet specs. Finally, we show that for various nozzle profile concepts, the optimal performance can be achieved by increasing the ratio of the circumferential surface area to the bulk volume to the extent that is allowable by manufacturing constraints.