论文标题
DASS:可区分的建筑搜索稀疏神经网络
DASS: Differentiable Architecture Search for Sparse neural networks
论文作者
论文摘要
在绩效要求和可用处理能力之间存在很大的差距,阻碍了边缘设备上深神经网络(DNN)的部署。尽管最近的研究在开发修剪方法以建立稀疏网络以减少DNN的计算开销方面取得了长足的进步,但仍有相当大的准确性损失,尤其是在高修剪比率下。我们发现,当将修剪机制应用于它们时,通过可区分的体系结构搜索方法为密集网络设计的架构无效。主要原因是当前方法不支持其搜索空间中的稀疏体系结构,并使用用于密集网络的搜索目标,并且不关注稀疏性。在本文中,我们提出了一种搜索稀疏友好神经体系结构的新方法。我们通过在搜索空间中添加两个新的稀疏操作并修改搜索目标来做到这一点。我们提出了两个新型的参数Sparseconv和Sparselinear操作,以扩展搜索空间以包括稀疏操作。特别是,由于使用线性和卷积操作的稀疏参数版本,这些操作使其具有灵活的搜索空间。提出的搜索目标使我们可以根据搜索空间操作的稀疏来训练建筑。定量分析表明,我们的搜索体系结构的表现优于CIFAR-10和Imagenet数据集上稀疏网络中使用的搜索体系结构。在性能和硬件有效性方面,DASS将Mobilenet-V2的稀疏版本的准确性从73.44%提高到81.35%(+7.91%提高),而推理时间更快。
The deployment of Deep Neural Networks (DNNs) on edge devices is hindered by the substantial gap between performance requirements and available processing power. While recent research has made significant strides in developing pruning methods to build a sparse network for reducing the computing overhead of DNNs, there remains considerable accuracy loss, especially at high pruning ratios. We find that the architectures designed for dense networks by differentiable architecture search methods are ineffective when pruning mechanisms are applied to them. The main reason is that the current method does not support sparse architectures in their search space and uses a search objective that is made for dense networks and does not pay any attention to sparsity. In this paper, we propose a new method to search for sparsity-friendly neural architectures. We do this by adding two new sparse operations to the search space and modifying the search objective. We propose two novel parametric SparseConv and SparseLinear operations in order to expand the search space to include sparse operations. In particular, these operations make a flexible search space due to using sparse parametric versions of linear and convolution operations. The proposed search objective lets us train the architecture based on the sparsity of the search space operations. Quantitative analyses demonstrate that our search architectures outperform those used in the stateof-the-art sparse networks on the CIFAR-10 and ImageNet datasets. In terms of performance and hardware effectiveness, DASS increases the accuracy of the sparse version of MobileNet-v2 from 73.44% to 81.35% (+7.91% improvement) with 3.87x faster inference time.