论文标题
线性函数的安全网络功能计算 - 第一部分:源安全性
Secure Network Function Computation for Linear Functions -- Part I: Source Security
论文作者
论文摘要
在本文中,我们通过定向的无环网络提出了安全的网络功能计算。在这样的网络中,需要一个接收器节点才能使用零错误计算一个目标函数,该目标函数在多个源节点处将输入作为源消息生成,而在给定的窃听集集合中,可以访问任何一个但不超过一个窃听的窃听器来获取有关源消息安全函数的任何信息。上述模型的安全计算能力定义为可以在接收器节点处使用零误差安全地计算目标函数的最大平均次数,并使用给定的窃听集集和安全函数,以一次使用网络。总体上,这种能力的表征非常困难。在当前的论文中,我们考虑使用Viretapper安全地计算线性功能,该功能可以窃听任何边的任何子集,直至一定尺寸的R(称为安全级别),而安全函数是身份函数。我们首先证明了对安全计算能力的上限,该界限适用于任意网络拓扑和任意安全级别。当安全级别r等于0时,我们的上限将减小到计算能力,而无需考虑安全。我们发现一个令人惊讶的事实是,对于某些模型,与没有安全考虑的计算能力相比,安全计算能力没有惩罚。我们通过使用图理论方法进一步获得上限的等效表达,因此我们开发了一种计算该结合的有效方法。此外,我们介绍了线性函数计算安全网络代码的结构,并在安全计算能力上获得下限。
In this paper, we put forward secure network function computation over a directed acyclic network. In such a network, a sink node is required to compute with zero error a target function of which the inputs are generated as source messages at multiple source nodes, while a wiretapper, who can access any one but not more than one wiretap set in a given collection of wiretap sets, is not allowed to obtain any information about a security function of the source messages. The secure computing capacity for the above model is defined as the maximum average number of times that the target function can be securely computed with zero error at the sink node with the given collection of wiretap sets and security function for one use of the network. The characterization of this capacity is in general overwhelmingly difficult. In the current paper, we consider securely computing linear functions with a wiretapper who can eavesdrop any subset of edges up to a certain size r, referred to as the security level, with the security function being the identity function. We first prove an upper bound on the secure computing capacity, which is applicable to arbitrary network topologies and arbitrary security levels. When the security level r is equal to 0, our upper bound reduces to the computing capacity without security consideration. We discover the surprising fact that for some models, there is no penalty on the secure computing capacity compared with the computing capacity without security consideration. We further obtain an equivalent expression of the upper bound by using a graph-theoretic approach, and accordingly we develop an efficient approach for computing this bound. Furthermore, we present a construction of linear function-computing secure network codes and obtain a lower bound on the secure computing capacity.