论文标题
构建准重还原的kac模型的嵌套嵌套的不可分解的N-复制,包括SL(M/N)和OSP(2/2n)系列
Construction of matryoshka nested indecomposable N-replications of Kac-modules of quasi-reductive Lie superalgebras, including the sl(m/n) and osp(2/2n) series
论文作者
论文摘要
我们构建了一类新的有限尺寸的不可分解的超级跨性别的表示,可以自然地解释较重的基本粒子的存在。在I型中,Superalgebras SL(M/N)和OSP(2/2N),标记有限尺寸不可减至表示的Dynkin权重是连续的。采用衍生工具,我们展示了如何构造不可分解的表示形式,将原始不可约形表示的n副本递归,并由一般的cabibbo角构造,如三代卵子和标准模型的夸克中所观察到的那样。然后在附录中概括了构造,以列出准级超级甲壳虫。
We construct a new class of finite dimensional indecomposable representations of simple superalgebras which may explain, in a natural way, the existence of the heavier elementary particles. In type I Lie superalgebras sl(m/n) and osp(2/2n), one of the Dynkin weights labeling the finite dimensional irreducible representations is continuous. Taking the derivative, we show how to construct indecomposable representations recursively embedding N copies of the original irreducible representation, coupled by generalized Cabibbo angles, as observed among the three generations of leptons and quarks of the standard model. The construction is then generalized in the appendix to quasi-reductive Lie superalgebras.