论文标题
反应扩散方程的扩展集和一维对称性
Spreading sets and one-dimensional symmetry for reaction-diffusion equations
论文作者
论文摘要
我们考虑反应 - 扩散方程$ \ partial_tu =ΔU+f(u)在整个空间中$ \ mathbb {r}^n $,我们对在间隔$ [0,1] $中的大型解决方案的大型动态感兴趣,并带有一般没有绑定的初始支持。在假设存在的旅行前线的存在下,我们将$ 0 $和$ 1 $以正速度连接起来,我们讨论了传播速度和扩展集的存在,这些速度和扩展集描述了解决方案级别集合的大全球形状。任何方向的扩展速度表示为弗里德林 - 加特纳类型公式。该公式在对反应的一般假设和从初始条件下发出的溶液的一般假设下,而具有一般无界支持的溶液,而大多数早期结果都涉及更具体的反应和紧凑的支持或几乎平面的初始条件。然后,我们大部分时间研究级别集的局部属性。如果最初在子图上支持,则将提出某些解决方案级别集的扁平属性。我们还研究了渐近圆锥形初始条件的特殊情况。对于Fisher-KPP方程,我们陈述了一些渐近局部的一维局部一维对称性,以$ω$ - 限制溶液集的元素,本着de Giorgi的猜想,用于allen-cahn方程的固定溶液。最后,我们提出了一些对数的及时估计值,该溶液位置相对于平面前端的位置滞后,速度最小,对于在无穷大时对数增长的亚图中支持的初始条件。还列出了一些相关的猜想和开放问题。
We consider reaction-diffusion equations $\partial_tu=Δu+f(u)$ in the whole space $\mathbb{R}^N$ and we are interested in the large-time dynamics of solutions ranging in the interval $[0,1]$, with general unbounded initial support. Under the hypothesis of the existence of a traveling front connecting $0$ and $1$ with a positive speed, we discuss the existence of spreading speeds and spreading sets, which describe the large-time global shape of the level sets of the solutions. The spreading speed in any direction is expressed as a Freidlin-Gärtner type formula. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We then investigate the local properties of the level sets at large time. Some flattening properties of the level sets of the solutions, if initially supported on subgraphs, will be presented. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we state some asymptotic local one-dimensional and monotonicity symmetry properties for the elements of the $Ω$-limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we present some logarithmic-in-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. Some related conjectures and open problems are also listed.