论文标题
Barotropic Navier-Stokes方程的粘性冲击复合波的大型行为
Large-time behavior of composite waves of viscous shocks for the barotropic Navier-Stokes equations
论文作者
论文摘要
我们研究了从riemann数据中扰动的1D压缩Navier-Stokes的大型行为,这些流动产生了两个具有较小幅度的冲击波的组成。我们证明,随着时间的流逝,无处不在的空间均匀地收敛,在空间中均匀地收敛到两个粘性冲击波的组成,直到无限远,直到动态变化。特别是,可以独立选择这两个波的优势。这是与具有独立小幅度的两个粘性冲击的复合波收敛的第一个结果。
We study the large-time behavior of the 1D barotropic Navier-Stokes flow perturbed from Riemann data generating a composition of two shock waves with small amplitudes. We prove that the perturbed Navier-Stokes flow converges, uniformly in space, towards a composition of two viscous shock waves as time goes to infinity, up to dynamical shifts. Especially, the strengths of the two waves can be chosen independently. This is the first result for the convergence to a composite wave of two viscous shocks with independently small amplitudes.