论文标题
带有储备金的缓存
Caching with Reserves
论文作者
论文摘要
缓存是许多计算机系统的关键组成部分,因此自然而然地是算法设计中的一个精心研究的主题。许多传统的缓存研究研究缓存了单用户或单处理器环境。在本文中,我们提出了两个相关的经典缓存问题的概括,这些问题捕获了多用户或多处理器环境中出现的问题。在带有储量问题的缓存中,需要一种缓存算法才能随时维护至少属于用户$ i $的$ k_i $页面,对于某些给定的储备容量$ k_i $。在公私缓存问题中,总尺寸$ k $的缓存被分区为子30,每个用户$ i $ $ k_i $的私有缓存以及任何用户可共享的公共缓存。在这两个模型中,就像在经典的缓存框架中一样,算法的目的是动态维护缓存,以最大程度地减少缓存失误的总数。 我们表明,使用储备金和公私缓存模型的缓存等效于不变的因素,因此集中于前者。与经典的缓存不同,即使在离线设置中,这些模型也是NP-HARD,即事先知道页面序列。对于离线设置,我们设计了一种2个附属算法,其分析仔细地跟踪了潜在功能以限制成本。在在线设置中,我们首先使用原始二重式框架设计$ O(\ ln K)$ - 竞争性分数算法,然后展示如何在线转换为具有相同保证的随机积分算法。
Caching is a crucial component of many computer systems, so naturally it is a well-studied topic in algorithm design. Much of traditional caching research studies cache management for a single-user or single-processor environment. In this paper, we propose two related generalizations of the classical caching problem that capture issues that arise in a multi-user or multi-processor environment. In the caching with reserves problem, a caching algorithm is required to maintain at least $k_i$ pages belonging to user $i$ in the cache at any time, for some given reserve capacities $k_i$. In the public-private caching problem, the cache of total size $k$ is partitioned into subcaches, a private cache of size $k_i$ for each user $i$ and a shared public cache usable by any user. In both of these models, as in the classical caching framework, the objective of the algorithm is to dynamically maintain the cache so as to minimize the total number of cache misses. We show that caching with reserves and public-private caching models are equivalent up to constant factors, and thus focus on the former. Unlike classical caching, both of these models turn out to be NP-hard even in the offline setting, where the page sequence is known in advance. For the offline setting, we design a 2-approximation algorithm, whose analysis carefully keeps track of a potential function to bound the cost. In the online setting, we first design an $O(\ln k)$-competitive fractional algorithm using the primal-dual framework, and then show how to convert it online to a randomized integral algorithm with the same guarantee.