论文标题

完美液体中的连接条件$ f(\ Mathcal {g},〜t)$引力理论

Junction conditions in perfect fluid $f(\mathcal{G},~T)$ gravitational theory

论文作者

Bhatti, M. Z., Yousaf, Z., Yousaf, M.

论文摘要

该手稿旨在建立$ f(\ Mathcal {g},〜t)$ GRAVITY的重力连接条件(JCS)。在此引力理论中,$ f $是高斯 - 骨网n的任意函数$ \ mathcal {g} $和能量 - 莫托姆张量$ t_ {μν} $的痕迹,即$ t $。我们首先在其通常的几何表示中引入该重力理论,然后在后部获得动态等效的标量张量演示,该演示对$ \ MATHCAL G $和$ t $中的通用函数$ f $的任意依赖性均由两个标量表和标量电位交换。然后,我们得出JCS,以在分离超表面$σ$之间在两个不同的空间时间之间匹配,假设物质扇区可以通过各向同性完美的流体配置来描述。我们采用一般方法,假设两个太空时间之间的薄壳可能在$σ$中产生。但是,我们的结果表明,对于分布形式主义的定义明确,不允许在该理论的一般版本中出现薄壳。因此,我们取而代之的是在相同条件下以$σ$的平滑匹配获得一组完整的JCS。然后在理论的标量表示中获得了相同的结果,从而强调了这两种表示之间的等效性。我们的结果极大地限制了为$ f(\ Mathcal {g},〜t)$ GRAVITY中的薄壳支撑的替代紧凑结构开发模型的可能性,例如Grastars和薄壳虫洞,但为搜索模型提供了在其表面平滑匹配的模型中提供的合适框架,从中可以从中呈现完美的流体星星。

This manuscript aims to establish the gravitational junction conditions(JCs) for the $f(\mathcal{G},~T)$ gravity. In this gravitational theory, $f$ is an arbitrary function of Gauss-Bonnet invariant $\mathcal{G}$ and the trace of the energy-momentum tensor $T_{μν}$ i.e., $T$. We start by introducing this gravity theory in its usual geometrical representation and posteriorly obtain a dynamically equivalent scalar-tensor demonstration on which the arbitrary dependence on the generic function $f$ in both $\mathcal G$ and $T$ is exchanged by two scalar fields and scalar potential. We then derive the JCs for matching between two different space-times across a separation hyper-surface $Σ$, assuming the matter sector to be described by an isotropic perfect fluid configuration. We take the general approach assuming the possibility of a thin-shell arising at $Σ$ between the two space-times. However, our results establish that, for the distribution formalism to be well-defined, thin-shells are not allowed to emerge in the general version of this theory. We thus obtain instead a complete set of JCs for a smooth matching at $Σ$ under the same conditions. The same results are then obtained in the scalar-tensor representation of the theory, thus emphasizing the equivalence between these two representations. Our results significantly constrain the possibility of developing models for alternative compact structures supported by thin-shells in $f(\mathcal{G},~T)$ gravity, e.g. gravastars and thin-shell wormholes, but provide a suitable framework for the search of models presenting a smooth matching at their surface, from which perfect fluid stars are possible examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源