论文标题

NEC:通过神经增强超声阴影的扬声器选择性取消

NEC: Speaker Selective Cancellation via Neural Enhanced Ultrasound Shadowing

论文作者

Guo, Hanqing, Li, Chenning, Li, Lingkun, Cao, Zhichao, Yan, Qiben, Xiao, Li

论文摘要

在本文中,我们提出了一种防御机制NEC(神经增强的取消),以防止未经授权的麦克风捕获目标扬声器的声音。与现有的基于争夺的音频取消方法相比,NEC可以选择性地从混合语音中删除目标扬声器的声音而不会引起对他人的干扰。具体来说,对于目标扬声器,我们设计了一个深神经网络(DNN)模型,以从他/她的参考音频中提取高级扬声器特定扬声器但与话语无关的声音。当麦克风录制时,DNN会产生阴影声音,以实时取消目标语音。此外,我们将可听见的阴影声音调节到超声频率上,使其对人类听不见。通过利用麦克风电路的非线性性,麦克风可以准确地解码阴影声音以取消目标语音。我们在不同的设置中使用8个智能手机麦克风对NEC进行全面实施和评估。结果表明,NEC在麦克风上有效地将目标扬声器静音,而不会干扰其他用户的正常对话。

In this paper, we propose NEC (Neural Enhanced Cancellation), a defense mechanism, which prevents unauthorized microphones from capturing a target speaker's voice. Compared with the existing scrambling-based audio cancellation approaches, NEC can selectively remove a target speaker's voice from a mixed speech without causing interference to others. Specifically, for a target speaker, we design a Deep Neural Network (DNN) model to extract high-level speaker-specific but utterance-independent vocal features from his/her reference audios. When the microphone is recording, the DNN generates a shadow sound to cancel the target voice in real-time. Moreover, we modulate the audible shadow sound onto an ultrasound frequency, making it inaudible for humans. By leveraging the non-linearity of the microphone circuit, the microphone can accurately decode the shadow sound for target voice cancellation. We implement and evaluate NEC comprehensively with 8 smartphone microphones in different settings. The results show that NEC effectively mutes the target speaker at a microphone without interfering with other users' normal conversations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源