论文标题
基于机器学习的工具,用于在Tokamaks上进行最后一次闭合的表面重建
A machine-learning-based tool for last closed-flux surface reconstruction on tokamaks
论文作者
论文摘要
核融合是可持续清洁能源的最佳选择之一。 Tokamaks允许将融合等离子体与磁场限制,而控制磁性构型的主要挑战之一是对最后一个闭合升华表面(LCF)的预测/重建。 LCF的时间的演变取决于执行器线圈和内部tokamak等离子体的相互作用。此任务需要实时能够的工具,能够处理高维数据以及时间高分辨率,在这种情况下,与内部等离子体状态响应的广泛输入执行器线圈之间的相互作用增加了其他复杂性。在这项工作中,我们介绍了一种新型的最先进的机器学习模型在LCFS重建中的应用在实验高级超导Tokamak(EAST)中,该实验从East的实验数据中自动学习。该体系结构不仅允许离线模拟和特定控制策略的测试,而且还可以嵌入到实时控制系统中,以进行在线磁平衡重建和预测。在实时建模测试中,我们的方法达到了非常高的精度,整个放电过程的LCFS重建平均相似性超过99%。
Nuclear fusion represents one of the best alternatives for a sustainable source of clean energy. Tokamaks allow to confine fusion plasma with magnetic fields and one of the main challenges in the control of the magnetic configuration is the prediction/reconstruction of the Last Closed-Flux Surface (LCFS). The evolution in time of the LCFS is determined by the interaction of the actuator coils and the internal tokamak plasma. This task requires real-time capable tools able to deal with high-dimensional data as well as with high resolution in time, where the interaction between a wide range of input actuator coils with internal plasma state responses add additional layer of complexity. In this work, we present the application of a novel state of the art machine learning model to the LCFS reconstruction in the Experimental Advanced Superconducting Tokamak (EAST) that learns automatically from the experimental data of EAST. This architecture allows not only offline simulation and testing of a particular control strategy, but can also be embedded in the real-time control system for online magnetic equilibrium reconstruction and prediction. In the real-time modeling test, our approach achieves very high accuracies, with over 99% average similarity in LCFS reconstruction of the entire discharge process.