论文标题

缪斯2022多模式分析挑战:幽默,情感反应和压力

The MuSe 2022 Multimodal Sentiment Analysis Challenge: Humor, Emotional Reactions, and Stress

论文作者

Christ, Lukas, Amiriparian, Shahin, Baird, Alice, Tzirakis, Panagiotis, Kathan, Alexander, Müller, Niklas, Stappen, Lukas, Meßner, Eva-Maria, König, Andreas, Cowen, Alan, Cambria, Erik, Schuller, Björn W.

论文摘要

多模式情感分析挑战(MUSE)2022致力于多模式的情感和情感认识。在今年的挑战中,我们包含三个数据集:(i)Passau自发的足球教练幽默(Passau-SFCH)数据集,其中包含德国足球教练的视听录音,标有幽默的标签; (ii)在七个情绪表达强度方面注释了个体对情绪刺激的反应,以及(iii)ulm-trier社会压力测试(ULM-TSST)数据集,该数据集包含音频数据,这些数据集包含音频数据,并以连续的情绪值(唤醒和价值)的压力派遣人员的持续情感价值(AROUS和Valence)中的人群中的人数标记。使用介绍的数据集,Muse 2022 2022解决了三个当代情感计算问题:在幽默检测子挑战(Muse-Humor)中,必须认识到自发的幽默;在情感反应中,必须预测七种细粒度的“野外”情绪。在情感压力亚挑战(Muse Surnenge)中,始终预测压力的情绪价值。挑战旨在吸引不同的研究社区,鼓励其学科的融合。主要是,Muse 2022针对视听情感识别,健康信息学和象征性情感分析的社区。该基线纸描述了数据集以及从中提取的功能集。具有LSTM细胞的复发性神经网络用于在每个亚挑战的测试分区上设置竞争性基线结果。我们向Muse-Humor报告了一个.8480的曲线(AUC)区域; .2801平均值(来自7级)Pearson的相关系数,分别为.4931 COOLESCORDANCE相关系数(CCC)和.4761,分别用于Muse sermant的价和唤醒。

The Multimodal Sentiment Analysis Challenge (MuSe) 2022 is dedicated to multimodal sentiment and emotion recognition. For this year's challenge, we feature three datasets: (i) the Passau Spontaneous Football Coach Humor (Passau-SFCH) dataset that contains audio-visual recordings of German football coaches, labelled for the presence of humour; (ii) the Hume-Reaction dataset in which reactions of individuals to emotional stimuli have been annotated with respect to seven emotional expression intensities, and (iii) the Ulm-Trier Social Stress Test (Ulm-TSST) dataset comprising of audio-visual data labelled with continuous emotion values (arousal and valence) of people in stressful dispositions. Using the introduced datasets, MuSe 2022 2022 addresses three contemporary affective computing problems: in the Humor Detection Sub-Challenge (MuSe-Humor), spontaneous humour has to be recognised; in the Emotional Reactions Sub-Challenge (MuSe-Reaction), seven fine-grained `in-the-wild' emotions have to be predicted; and in the Emotional Stress Sub-Challenge (MuSe-Stress), a continuous prediction of stressed emotion values is featured. The challenge is designed to attract different research communities, encouraging a fusion of their disciplines. Mainly, MuSe 2022 targets the communities of audio-visual emotion recognition, health informatics, and symbolic sentiment analysis. This baseline paper describes the datasets as well as the feature sets extracted from them. A recurrent neural network with LSTM cells is used to set competitive baseline results on the test partitions for each sub-challenge. We report an Area Under the Curve (AUC) of .8480 for MuSe-Humor; .2801 mean (from 7-classes) Pearson's Correlations Coefficient for MuSe-Reaction, as well as .4931 Concordance Correlation Coefficient (CCC) and .4761 for valence and arousal in MuSe-Stress, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源