论文标题

采样STFT期检索中的非唯一性理论

Non-uniqueness theory in sampled STFT phase retrieval

论文作者

Grohs, Philipp, Liehr, Lukas

论文摘要

从其频谱图(即,其短期傅立叶变换(STFT))从其频谱图中重建的重建是在几种重要应用中的关键问题,包括相干衍射成像和音频处理。这是一个经典的结果,对于合适的窗口,原则上,任何功能都可以从其频谱图中唯一地恢复到全局相位因子。但是,对于大多数实际应用,只有频谱图的离散样本(通常来自晶格)。这就提出了一个问题,即频谱图的晶格样本是否包含足够的信息来确定l^2(\ mathbb {r}^d)$中的函数$ f \至一个全局相位因子。在本文中,我们通过提供一般的非识别性结果来回答这个问题,从而导致采样的STFT阶段检索问题的非唯一性理论。 Precisely, given any dimension $d$, any window function $g$ and any (symplectic or separable) lattice $\mathcal{L} \subseteq \mathbb{R}^d$, we construct pairs of functions $f,h\in L^2(\mathbb{R}^d)$ that do not agree up to a global phase factor, but whose spectrograms agree on $ \ MATHCAL {L} $。我们的技术足够灵活,可以在更严格的假设下为独特的可恢复性提供反例。例如,如果窗口函数是真实价值的,则函数$ f,甚至可以选择满足$ | f | = | h | $。因此,我们的结果揭示了在没有相信息的情况下关键采样密度的不存在,这种属性与唯一性形成鲜明对比导致时间频率分析。

The reconstruction of a function from its spectrogram (i.e., the absolute value of its short-time Fourier transform (STFT)) arises as a key problem in several important applications, including coherent diffraction imaging and audio processing. It is a classical result that for suitable windows any function can, in principle, be uniquely recovered up to a global phase factor from its spectrogram. However, for most practical applications only discrete samples - typically from a lattice - of the spectrogram are available. This raises the question of whether lattice samples of the spectrogram contain sufficient information for determining a function $f\in L^2(\mathbb{R}^d)$ up to a global phase factor. In the present paper, we answer this question in the negative by providing general non-identifiability results which lead to a non-uniqueness theory for the sampled STFT phase retrieval problem. Precisely, given any dimension $d$, any window function $g$ and any (symplectic or separable) lattice $\mathcal{L} \subseteq \mathbb{R}^d$, we construct pairs of functions $f,h\in L^2(\mathbb{R}^d)$ that do not agree up to a global phase factor, but whose spectrograms agree on $\mathcal{L}$. Our techniques are sufficiently flexible to produce counterexamples to unique recoverability under even more stringent assumptions; for example, if the window function is real-valued, the functions $f,h$ can even be chosen to satisfy $|f|=|h|$. Our results thus reveal the non-existence of a critical sampling density in the absence of phase information, a property which is in stark contrast to uniqueness results in time-frequency analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源