论文标题

Banach-Mazur距离$ \ ell_p^3 $到$ \ ell_ \ infty^3 $的距离

Banach-Mazur Distance from $\ell_p^3$ to $\ell_\infty^3$

论文作者

Zhang, Longzhen, Meng, Lingxu, Wu, Senlin

论文摘要

Banach-Mazur距离的最大值$ d_ {bm}^m(x,\ ell_ \ infty^n)$,其中$ x $在所有$ n $ dimensional的真实Banach空间的集合上都很难计算。实际上,对于所有$ d_ {bm}^m的最大值(\ ell_p^n,\ ell_ \ infty^n)$的最大值对于[1,\ infty] $中的全部$ p \而言。我们证明$ d_ {bm}^m(\ ell_p^3,\ ell_ \ infty^3)\ leq 9/5,〜\ forall p \ in [1,\ infty] $。作为一个应用程序,获得了与Borsuk在Banach空间中的分区问题有关的以下结果:任何$ \ ell_p^3 $具有直径$ 1 $的子集$ a $ a $ a $ \ ell_p^3 $是$ 8 $ $ 8 $ a的$ a $ a $的联合,其直径最高为$ 0.9 $。

The maximum of the Banach-Mazur distance $d_{BM}^M(X,\ell_\infty^n)$, where $X$ ranges over the set of all $n$-dimensional real Banach spaces, is difficult to compute. In fact, it is already not easy to get the maximum of $d_{BM}^M(\ell_p^n,\ell_\infty^n)$ for all $p\in [1,\infty]$. We prove that $d_{BM}^M(\ell_p^3,\ell_\infty^3)\leq 9/5,~\forall p\in[1,\infty]$. As an application, the following result related to Borsuk's partition problem in Banach spaces is obtained: any subset $A$ of $\ell_p^3$ having diameter $1$ is the union of $8$ subsets of $A$ whose diameters are at most $0.9$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源