论文标题

凸面上凸面的长度正pectrum

Length orthospectrum of convex bodies on flat tori

论文作者

Dang, Nguyen Viet, Léautaud, Matthieu, Rivière, Gabriel

论文摘要

与研究Pollicott-Ruelle在负弯曲的歧管上的共振相比,我们定义了各向异性Sobolev空间,这些空间非常适应于分析与任何翻译不变的Finsler finsler the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the to tous $ \ mathbb {t} t}^d $的分析。在这种功能观点的几种应用中,我们研究了$ \ mathbb {t}^d $的两个凸子集的地球化学特性(即严格凸面的$ \ mathbb {r}^d $)。与此类矫正器的一组长度相关联,我们定义了几何爱泼斯坦功能,并证明了其Meromormormormormorphic延续。我们根据凸组集的固有体积来计算其残基。我们还证明了泊松型求和公式,这些公式与邻域的长度和磁性拉普拉斯频谱有关。

In analogy with the study of Pollicott-Ruelle resonances on negatively curved manifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic vector field associated with any translation invariant Finsler metric on the torus $\mathbb{T}^d$. Among several applications of this functional point of view, we study properties of geodesics that are orthogonal to two convex subsets of $\mathbb{T}^d$ (i.e. projection of the boundaries of strictly convex bodies of $\mathbb{R}^d$). Associated with the set of lengths of such orthogeodesics, we define a geometric Epstein function and prove its meromorphic continuation. We compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type summation formulae relating the set of lengths of orthogeodesics and the spectrum of magnetic Laplacians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源