论文标题

CPO:将强大的全景更改为点云本地化

CPO: Change Robust Panorama to Point Cloud Localization

论文作者

Kim, Junho, Jang, Hojun, Choi, Changwoon, Kim, Young Min

论文摘要

我们提出了CPO,这是一种快速,强大的算法,该算法与可能包含更改的场景的3D点云相对于2D全景。为了稳健地处理场景的变化,我们的方法偏离了传统的特征点匹配,并着重于全景图像提供的空间上下文。具体而言,我们建议使用得分图提出有效的颜色直方图生成和随后的鲁棒定位。通过利用球形预测的唯一模棱两可,我们提出了大量相机姿势的非常快的颜色直方图生成,而无需明确渲染所有候选姿势的图像。我们将Panorama和Point Cloud的区域一致性作为2D/3D分数图,并使用它们来称量输入颜色值以进一步提高鲁棒性。加权颜色分布很快找到了良好的初始姿势,并实现了基于梯度的优化的稳定收敛。 CPO轻量级,在所有测试的场景中都能实现有效的本地化,尽管场景变化,重复性结构或无特征区域都表现出稳定的性能,这是带有透视摄像头视觉定位的典型挑战。代码可在\ url {https://github.com/82magnolia/panoramic-localization/}中获得。

We present CPO, a fast and robust algorithm that localizes a 2D panorama with respect to a 3D point cloud of a scene possibly containing changes. To robustly handle scene changes, our approach deviates from conventional feature point matching, and focuses on the spatial context provided from panorama images. Specifically, we propose efficient color histogram generation and subsequent robust localization using score maps. By utilizing the unique equivariance of spherical projections, we propose very fast color histogram generation for a large number of camera poses without explicitly rendering images for all candidate poses. We accumulate the regional consistency of the panorama and point cloud as 2D/3D score maps, and use them to weigh the input color values to further increase robustness. The weighted color distribution quickly finds good initial poses and achieves stable convergence for gradient-based optimization. CPO is lightweight and achieves effective localization in all tested scenarios, showing stable performance despite scene changes, repetitive structures, or featureless regions, which are typical challenges for visual localization with perspective cameras. Code is available at \url{https://github.com/82magnolia/panoramic-localization/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源