论文标题
原子探针断层扫描中SI簇的场后电离:一项联合理论和实验研究
Post-field ionization of Si clusters in atom probe tomography: A joint theoretical and experimental study
论文作者
论文摘要
原子探针断层扫描(APT)量化的主要挑战是无法将具有相同质量/电荷状态($ m/n $)比但质量不同的离子解次倒计时。例如,$^{75} {\ rm {as}}}^{+} $和$^{75} {\ rm {as}} {_ _ 2}^{2}^{2+} $ at〜75 da或$^{14} {14} $^{28} {\ rm {si}}}^{2+} $在〜14 da上,如果没有其他知识的动能或大量分辨能力的显着改善,就无法区分。这种质量峰重叠会导致峰分配中的歧义,从而导致组成不确定性和重建体积中原子的不正确标记。在没有实用技术来测量现场蒸发离子的动能的情况下,我们提出建议,然后探索基于控制多个电荷分子/簇的基本过程,以解决此问题,以解决此问题,以解决此问题,即appt(即pfi pfi)。预测分子离子作为工作条件的函数的PFI行为的能力可以提供解决峰重叠并最小化组成不确定性的第一步。我们通过比较SI簇的电荷比率($ \ rm {si} _2 $,$ \ rm {si} _3 $和$ \ rm {si} _4 $)与理论预测的理论预测。然后,我们讨论可能影响拟合质量的模型参数以及可以更好地理解APT中分子离子PFI的可能方式。最后,我们测试了提出的方法对不同材料系统的可传递性,并概述了取得更可靠的结果的前进方式。
A major challenge for Atom Probe Tomography (APT) quantification is the inability to decouple ions which possess the same mass/charge-state ($m/n$) ratio but a different mass. For example, $^{75}{\rm{As}}^{+}$ and $^{75}{\rm{As}}{_2}^{2+}$ at ~75 Da or $^{14}{\rm{N}}^+$ and $^{28}{\rm{Si}}^{2+}$ at ~14 Da, cannot be differentiated without the additional knowledge of their kinetic energy or a significant improvement of the mass resolving power. Such mass peak overlaps lead to ambiguities in peak assignment, resulting in compositional uncertainty and an incorrect labelling of the atoms in a reconstructed volume. In the absence of a practical technology for measuring the kinetic energy of the field-evaporated ions, we propose and then explore the applicability of a post-experimental analytical approach to resolve this problem based on the fundamental process that governs the production of multiply charged molecular ions/clusters in APT, i.e., Post-Field Ionization (PFI). The ability to predict the PFI behaviour of molecular ions as a function of operating conditions could offer the first step towards resolving peak overlap and minimizing compositional uncertainty. We explore this possibility by comparing the field dependence of the charge-state-ratio for Si clusters ($\rm{Si}_2$, $\rm{Si}_3$ and $\rm{Si}_4$) with theoretical predictions using the widely accepted Kingham PFI theory. We then discuss the model parameters that may affect the quality of the fit and the possible ways in which the PFI of molecular ions in APT can be better understood. Finally, we test the transferability of the proposed approach to different material systems and outline ways forward for achieving more reliable results.