论文标题

通过功能集合重新审视单一图像

Denoising single images by feature ensemble revisited

论文作者

Fahim, Masud An Nur Islam, Saqib, Nazmus, Siam, Shafkat Khan, Jung, Ho Yub

论文摘要

在许多计算机视觉子域中,图像denoising仍然是一个具有挑战性的问题。最近的研究表明,在有监督的环境中取得了重大改进。但是,很少有挑战(例如空间忠诚度和类似卡通的平滑度)仍未解决或果断地忽略。我们的研究提出了一个简单而有效的架构,用于解决上述问题的降解问题。所提出的体系结构重新审视了模块化串联的概念,而不是长时间和更深的级联连接,以恢复给定图像的更清洁的近似。我们发现不同的模块可以捕获多功能表示形式,而串联表示为低级图像恢复创造了更丰富的子空间。所提出的架构的参数数量仍然小于以前大多数网络的数量,并且仍然比当前最新网络取得了重大改进。

Image denoising is still a challenging issue in many computer vision sub-domains. Recent studies show that significant improvements are made possible in a supervised setting. However, few challenges, such as spatial fidelity and cartoon-like smoothing remain unresolved or decisively overlooked. Our study proposes a simple yet efficient architecture for the denoising problem that addresses the aforementioned issues. The proposed architecture revisits the concept of modular concatenation instead of long and deeper cascaded connections, to recover a cleaner approximation of the given image. We find that different modules can capture versatile representations, and concatenated representation creates a richer subspace for low-level image restoration. The proposed architecture's number of parameters remains smaller than the number for most of the previous networks and still achieves significant improvements over the current state-of-the-art networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源