论文标题
基于物理学的机器学习方法,用于建模中等或高渗透合金的温度依赖性屈服强度
Physics-Based Machine-Learning Approach for Modeling the Temperature-Dependent Yield Strengths of Medium- or High-Entropy Alloys
论文作者
论文摘要
机器学习已成为预测结构材料的温度依赖性屈服强度(YS)的强大工具,尤其是对于多本元素元素系统。但是,成功的机器学习预测取决于合理的机器学习模型的使用。在这里,我们提供了一个全面的,最新的概述,以预测中透镜或高透镜合金的温度依赖性YS(MEAS或HEAS)。在此模型中,引入了突破温度,Tbreak,可以指导具有吸引人的高温特性的Meas或Heas的设计。与假设黑盒结构不同,我们的模型基于基础物理,并以先验信息的形式合并。采用了一种全球优化技术来实现在低温和高温方向上的模型参数的同时优化,这表明在ys之间的断裂温度是一致的,并且对于多种沉重组成而言,最终强度是一致的。测量/HEAS的Ys和基于镍的超合金的Ys之间的高级比较揭示了选定的难治性HEAS的优势强度。对于可靠的操作,由难治性合金制成的结构成分的温度(例如涡轮刀片)可能需要保持在Tbreak以下。一旦超过Tbreak,相位转换可能会开始进行,并且合金可能开始失去结构完整性。
Machine learning is becoming a powerful tool to predict temperature-dependent yield strengths (YS) of structural materials, particularly for multi-principal-element systems. However, successful machine-learning predictions depend on the use of reasonable machine-learning models. Here, we present a comprehensive and up-to-date overview of a bilinear log model for predicting temperature-dependent YS of medium-entropy or high-entropy alloys (MEAs or HEAs). In this model, a break temperature, Tbreak, is introduced, which can guide the design of MEAs or HEAs with attractive high-temperature properties. Unlike assuming black-box structures, our model is based on the underlying physics, incorporated in form of a priori information. A technique of global optimization is employed to enable the concurrent optimization of model parameters over low- and high-temperature regimes, showing that the break temperature is consistent across YS and ultimate strength for a variety of HEA compositions. A high-level comparison between YS of MEAs/HEAs and those of nickel-based superalloys reveal superior strength properties of selected refractory HEAs. For reliable operations, the temperature of a structural component, such as a turbine blade, made from refractory alloys may need to stay below Tbreak. Once above Tbreak, phase transformations may start taking place, and the alloy may begin losing structural integrity.