论文标题

最高度三的图形尺寸尺寸

Size-Ramsey numbers of graphs with maximum degree three

论文作者

Draganić, Nemanja, Petrova, Kalina

论文摘要

图$ h $的尺寸ramsey number $ \ hat {r}(h)$是最小的边缘a(主机)图$ g $可以具有的,因此对于$ g $的任何红色/蓝色颜色,都有$ g $中的$ h $的单色副本。最近,Conlon,Nenadov和Trujić表明,如果$ h $是$ n $顶点的图表和最高学位的最高学位,则是$ \ hat {r}(h)= o(n^{8/5})$,在$ n^{5/3 + o(1)$ n^$ n^的上限上得到改善,可用于Kohayakawa,Rourtar,rorter,sz and sch and sch。在本文中,我们表明$ \ hat {r}(h)\ leq n^{3/2+o(1)} $。虽然先前使用的主机图是香草二项式随机图,但我们使用新型的宿主图构造证明了结果。我们的界限击中了现有方法的自然障碍。

The size-Ramsey number $\hat{r}(H)$ of a graph $H$ is the smallest number of edges a (host) graph $G$ can have, such that for any red/blue colouring of $G$, there is a monochromatic copy of $H$ in $G$. Recently, Conlon, Nenadov and Trujić showed that if $H$ is a graph on $n$ vertices and maximum degree three, then $\hat{r}(H) = O(n^{8/5})$, improving upon the upper bound of $n^{5/3 + o(1)}$ by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper we show that $\hat{r}(H)\leq n^{3/2+o(1)}$. While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源