论文标题
部分可观测时空混沌系统的无模型预测
Proper actions of Grigorchuk groups on a CAT(0) cube complex
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
On this paper we will present a construction of a CAT(0) cube complex (an infinite cube), on which the uncountable family of Grigorchuk groups $G_ω$ act without bounded orbit. Moreover, if the sequence $ω$ does not contain repetition, we prove that the action is proper and faithful. As a consequence of this result, this cube complex is a model for the classifying space of proper actions for all the groups $G_ω$ with $ω$ without repetition. This construction works in a general way for any group acting on a set and which admits a commensurated subset.These examples of non-elliptic actions of infinite finitely generated torsion groups on a non-positively curved cube complex contrast to several established fixed-point theorems concerning actions of torsion groups.