论文标题
部分可观测时空混沌系统的无模型预测
Hidden Cooling Flows in Clusters of Galaxies
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The radiative cooling time of the hot gas at the centres of cool cores in clusters of galaxies drops down to 10 million years and below. The observed mass cooling rate of such gas is very low, suggesting that AGN feedback is very tightly balanced or that the soft X-ray emission from cooling is somehow hidden from view. We use an intrinsic absorption model in which the cooling and coolest gas are closely interleaved to search for hidden cooling flows in the Centaurus, Perseus and A1835 clusters of galaxies. We find hidden mass cooling rates of between 10 to 500 Msunpyr as the cluster mass increases, with the absorbed emission emerging in the Far Infrared band. Good agreement is found between the hidden cooling rate and observed FIR luminosity in the Centaurus Cluster. The limits on the other two clusters allow for considerable hidden cooling. The implied total mass of cooled gas is much larger than the observed molecular masses. We discuss its fate including possible further cooling and collapse into undetected very cold clouds, low mass stars and substellar objects,